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I August 2014

(1) Use contour integration to show that for all a > 0,

/OO cos(az) dr = me™ .

N

justify any limits and integrals

Proof. Consider the complex function _
eazz

T 1422

oo (oo}
8%/ f(z)dz :/ co;(ax)dm
so it suffices to compute R ffooo f(2)dz. Consider the closed upper semicircle -y centered at the origin going
from —R to R along the real axis, where R >> 1. Then the residue theorem tells us that

1
27m[yf(z)alz = ZRest

Notice that f(z) has a simple pole at z = ¢ and no other poles inside the region in question for any such
large value of R.

f(2)

notice that

Resif = lim w = 67.
z2—i (2 —1)(z 4+ 1) 2

It remains now to show that the contribution of the upper arc a of the semicircle parameterized by z(6) = Re??

with 6 € [0, 7] contributes no part to the integral. Indeed,

7 iaRe’ p; i
e Rie
/af(Z) dz:/o T ez

RefaR sin 6

as R — oo, it is clear that since a > 0 that Re~*®sm0R2 _ 1 — 0 for any value of 6 € [0, 0] (since sin(f) > 0
for 6 € [0, 7).

Thus in the limit as R — oo, [ f(z)dz — 0 so
o0
/ f(z)dz = 2mie™*/2i = we™
—o0o

Taking the real part we see that

/ co2s(ax) dr = me™®
feo X211

as required.
O

(2) Let f(x) be a continuously differentiable real-valued function over (—oo, 00) with f(0) = 0. Suppose
that | f/(z)| < |f(z)| for all z € (—o0, 00).



(a) Show that f(z) =0 for all z in a neighborhood (—¢, €) of 0, for some € > 0.

Proof. Consider the interval [0,1/2]. Since this interval is compact and f is continuous, f attains a maximum
on this interval, call it M. Then notice that M > |f(x)| > |f'(z)] for all x € [0,1/2]. by application of the
mean value theorem we see that

[f(@)| = |f(z) = fO)] = [f'(e)(x = 0)] < Mz < M/2

from which we see that M/2 < M so M must be zero. By the same process we see that on [—1/2,0],
f(z)=0. O

(b) Show that f(x) =0 for all € (—o0, ).

Proof. We can show this inductively on succesive intervals [n/2, (n + 1)/2]. Since the base case was done in
the part (a) assume that f(z) = 0 on [n/2, (n+1)/2], then we know that f((n+1)/2) = 0 and by compactness
f attains a maximum M on the interval [(n +1)/2, (n + 2)/2]. From this we see that M > |f(z)| > |f'(z)|
for x € [(n+1)/2,(n + 2)/2] thus by the MVT,

[f(@) =0l = f'()(z = (n+1)/2] < M(2 — (n+1)/2) < M/2

and as before we see that M =0 so f(z) =0on [(n+1)/2,(n+2)/2]. This f(z) =0 for all z € [0,00). A
similar argument shows that f(z) = 0 for (—oo, 0]. O

(3) Let Dy C C be the open disc centered at i with radius 1, and let Do C C be the open disc centered at
3/2¢ with radius 1/2. Find an explicit biholomorphic map sending 2 = D7 — D5 onto the open unit disc in
C. You may express this solution as a composition of biholomorphic maps so long as each of those maps is
written explicitly.

Proof. First apply a rotation e~™/2. Then notice that the map F(z) = %—Z which is the Cayley transform
that maps conformally H to D will map the line {x + i | z € R} to the circle centered at 1/2 with radius
1/2. A simple computation verifies that F'(2¢) = 1/3 lies inside this circle and so everything in the strip
S ={x+iy |y e (0,1)} is mapped into e~"/2(Q). Since F is conformal restrcited to S, apply the inverse
G :e™/2(Q) — S. Then we apply log(mz) which is a conformal map from S to H. Finally we apply the map
F :H — D. The explicit map then will be

Folog(m)oGoe ™?:Q D

as required. O
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4) Suppose f is an entire function with f(2)|?dxdy < oo. Show that f(z) =0 for all z € C.
C

Proof. Let g(z) = f%(z). Since |g(z)| = |f(2)|?, and g is holomorphic on C, it suffices to show that if
J Jclg(2)ldzdy < oo, then g is zero. Recall the mean value theorem which tells us that

g(0) 1 /Oﬂg(reie)dﬁ

T o



for any r > 0 since g is entire. Then multiply both sides by r and integrate from 0 to R

R 1 (R o .
g(0)rdr = —/ / g(re*”)rdfdr
| s = 5= [7 [ atre)
1 R p2m 0
g(0) = ﬂ/o /0 g(re'”)rdfdr
7l
= — g(z)dzdy

TR? Dr(0) )

z)|dzdy and in the limit as R — oo, [[y o l9(2)|dzdy — [ |g(2)|dwdy < oo

and so |g )| § —z [fel9(z |dxdy — 0. Thus |g(0)] = 0. We can repeat this procedure to evaluate |g(z)]
for any z € C to show that |g(z)| = 0. Thus g(z) = 0. O

then |g(0

— 7R

IV  August 2017
(3)

(A) Let B={(x,y) | 2*+y? <1} and let u(x,y) be a harmonic function defined on some open set U
containing the closure of B. Prove that

1
u(0,0) = ;/Bu(x,y)dxdy

Proof. Notice that the statement implies that u(z,y) is harmonic in an open ball of radius R > 1 containing
B, then the mean value theorem of harmonic functions which states that

1 2m 0
u(0) = %/0 u(pe*”)d

for any 0 < p <1 < R. Multiplying by p and integrating both sides from 0 to 1

2m
/ / / u(pe’ pd&dp

% Sy r——

as required. O
(B)

V January 2018

(1) Let A > 1 be a real number. Show that the equation ze*~* = 1 has a real solution in the unit disk,
and that there are no other solutions in the unit disk.

Proof. First let us notice that e*™% # 0 for all z thus ze** = 1 if and only if z = e*~*. Now the
function f : [-1,1] = R, f(z) = z — e* has the following properties: f(—1) = —1 — e~ @Y < 0 and
f(1) =1 —e!'=* > 0 since A > 1, thus by the intermediate value theorem there exists ¢ € [~1,1] such that

fl@)y=0.

To show that there are no other solutions in the unit disk, let us notice that for all z € D

le* ™A < R <1 since A > 1 and R(z) < 1



moreover |z| = 1 for all z on the unit circle so by Rouche’s theorem z and z — e*~* have the same number
of zeros in the unit circle D. Since z has a unique zero at the origin, this tells us that the real solution we
found in the first part of this problem is the only solution in the unit disk. O

(2) Let y(t) : [0,b] — C be a piecewise differentiable smooth function describing a curve I' in the complex
plane

(A) Fora#T,let

(M A
= [ g

Differentiate e~ "(*)(y(u) — a) and prove that (") = Z%g;:g for all 0 < u <b.

Proof. First

%e—h(u) ('y(u) — a) — _h/(u)eh(u) (’Y(U) _ a) + e—h(u),y/(u)

and notice by the fundamental theorem of calculus that h'(u) = % fou ,YZ;)(t_)a dt = ,Yﬁ(’;()u_)a SO

= _,7(,:;)(u_)aeh(U) (’Y(U) _ a) 4 e—h(u),}//(u)
= (Y (u) =7 (w)e"™ =0

thus e ") (y(u) — a) = k for some constant k. To determine this constant notice that e~ (y(0) — a) =
~v(0) — a and so we see that

as required. O

(B) Use (A) to show that if T is a closed path then [.(z —a)~'dz is an integer multiple of 27i. Show
that this integral is zero if I' is contained in the interior of a disk not containing a.

Proof.

[P L R
/Fz_adz—/o = h0)

h®) _ 1(0)—a _ 1
7(0) —a
since y(b) = v(0) as T is a closed curve. We then see that h(b) = n2mi for n € Z. The last conclusion follows

from the fact that 1/(z — a) is holomorphic for all z # a and so by Cauchy’s theorem must vanish if T is
contained in a closed disk not containing a. O

Notice then by part (A) that

(4) Define D ={z € C|2 < |z| < 3}. Let f be a holomorphic function over D that is continuous over D.



(A) Suppose that max|.|—o |f(2)| < 2 and max.|—3 | f(2)| < 3. Prove that |f(z)| < |z| on D.

f(z)

z

Proof. Consider the map g(z) = . Notice that since f(z) is nonvanishing, that g(z) is holomorphic on

D. Thus for all |z| = 2,

[f) _ 2
— < —=1
o) = S0 < 2
and similarly when |z| = 3,
f)l _ 3
l9(2)] EREE

so we then apply the maximum-modulus principle to g(z), where we see that |g(z)| <1 for all z € D. Thus

If(2)] < |zl
for all z € D. O

(B) Suppose that |f(z)| = |z| for |z2| = 2 and |z] = 3. Suppose furthermore that f(z) does not have
any zeros in D. Prove that f(z) = €2z for some constant 6 € [0, 7].

Proof. Let us define the following function
h(z) =In[f(z)] — In|z|

and notice that this function is harmonic on D. Furthermore, we see that when |z| = 2, that |h(z)| =
In|2| — In|2| = 0 and similarly when |z| = 3 that |h(z)| = In|3| — In|3| = 0. We conclude then by the
maximum-modulus principle for harmonic functions that h(z) = 0 on D, thus

In|£()] = Inz]

and so |f(2)| = |z|. Thus f(z) = ez as required. O

VI August 2018

(1) Let U be a connected domain in C.

(A) Let h(z) be harmonic on U, and f : U — U be a holomorphic function. Prove that ho f is a
harmonic function on U.

Proof. Recall that A = 4%%. Now applying the complex chain rule,

Ohof) _0hdf  OhOF
0z 020z 0z 0z

since f is holomorphic the first term disappears, so a(g;f ) = %g—; Now
Dothof) o (0h9F
0z 0z  02\0z0%

(0 0h of Oh [0 of
The first term is zero since h is harmonic, and the second term is zero since f is antiholomorphic and
therefore _ _

207 _ 007

0z 0z 0z 0z
thus h o f is harmonic. O



(B) Let h(z) be a real valued harmonic function on U such that (h(z))? is also a harmonic function on
U. Prove that h(z) must be constant.

Proof. First let us define h(z) = h(z) — h(w) for some fixed w € U. Now notice that % is harmonic and A2 is
also harmonic and remains real valued. Now since the image of h is entirely real, it follows that the image
of —h? is contained in R<g. Now furthermore notice that —h2(w) = 0 is a maximum of the function on U,
which by the maximum modulus principle for harmonic functions implies that h2 (z) =0 for all z and hence
h(z) = h(w) is constant. O

(2) Let 21 # 29 € C.

(A) Construct all Biholomorphic maps of the complex plane which have z; and z5 as their fixed points.

Proof. Biholomorphic maps on C are contained in the set of injective entire functions, but this set consists
of only the linear maps f(z) = az + b with a # 0. To see this notice that f(1/z) cannot be a removable
singularity since otherwise f would be bounded and hence constant by Liouville’s theorem. f(1/z) cannot
be an esential singularity since the Casorati-Weierstrass theorem implies that for any open set containing
0, f(1/2) is dense, thus implying that f is not injective. Lastly, we see that f has a pole at infinity. Since
f has no other poles, it follows that f(z) = (az 4+ b)®. In order for f to remain injective, n = 1, thus
f(z) =az+b, a #0. Since linear maps of the form az + b, a # 0, are surjective, it follows that these are all
of the biholomorphisms of C. Now if z; = az; + b and 2o = azs +b. If a # 1, then

b

:lfa

zZ1 = 22

which is a contradiction so @ = 1, then z; = z; + b implying that b = 0 so the only biholomorphism of C
fixing both z; and z5 is the identity map f(z) = 2. O

(B) Construct all biholomorphisms of C such that 2, and 2.
Sketch of Proof

Recalling that the automorphisms of CU {co} are {zzzis | a,b,¢,z € C,ad — bc = 1}. Now in order to fix

z1 and z9 we obtain the following additional linear constraints.

CZ§+d22_a22_b:O

czf—&—dzl —az1—b=0
All together we have three independent constraints and 4 unknowns which implies that the solution space is
one dimensional. It is easy to find biholomorhpisms which send z; to 0 and 22 to oo, and then construct its
inverse. Let A, A~! denote such a transformation. We then see that A='o0e? 0 A: C — C are all conformal

maps fixing z; and z, for any value of §. These are all of them as we have a 1-dimensional space worth of
solutions.

VII August 2020

(5) Let f be holomorphic on a neighborhood of the closed unit disk centered at the origin. Assume that
|f(z)] = 1 on |z] = 1, , and is not a constant on the disc. Prove that there exist a positive integer k,
points aq, ..., ax, in the open unit disk positive integers mq, ..., my, and positive integers my, ..., my, and

a complex number 8 such that
k m
zZ— Q4
@) =8]] <1 _w>
i=1 v

for all z € D.



Proof. Since f(z) is analytic in an open neighborhood of the disk, | f(z)| — 1 uniformly as |z| — 1, thus there
is some r > 1 such that |f(z)| > 0 for all z € {z | r < |z| < 1}. It follows then that f can only have a finite
number of zeros in the disk as otherwise the set of zeros would contain a limit point (by Bolzano-Weierstrass)

and by uniqueness of analytic continuuation would be the zero function. Let aq,...,a; be those zeros and
let mq, ..., m; be the multiplicities of those zeros, then
Ml —a\™
—
zZ) =
5t2) 1;[1 (1 _ai>

is an analytic function on the disk such that |f(z)|1 on |z| = 1. We then want to show that all such g with
those prescribed zeros and multiplicities is equivalent to g(z) up to rotation. Let h(z) be another function
which has the same zeros and multiplicities, then h(z)/g(z) and g(z)/h(z) are both analytic functions on
the disk with norm one on |z| = 1, thus maximum modulus tells us that |h(z)| < |g(z)| and |g(2)| < |h(2)],
so |g(2)| = |h(2)| and we see that h(z) = Bg(z) for some |5] = 1.

VIII January 2021

(1) Prove that all 5 roots of 22° + 8z — 1 lie in the disk |z| < 2 but only one root lies inside |z| < 1.

Proof. First let us see that for z € {|z| = 1}, [22° — 1| < 2|2/ +1 =3 and [82] = 8 for all z € {|z| = 1}, thus
by Rouche’s theorem, 8z and 225 4+ 82 — 1 have the same number of zeros inside |z| < 1. Since 8z = 0 when
z =0 is the only zero in |z| < 1, it follows that 225 4+ 82 — 1 has one zero inside |z| < 1.

Now on |z| = 2, |82 — 1] < 8|z| + 1 = 17 and [22°| = 2|z|> = 25 = 64 so by Rouche’s theorem 2z° and
225 + 8z — 1 have the same number of zeros in |z| < 2. Since 2z° = 0 for all 5 roots of unit which have
modulus 1 it follows that 22° + 82z — 1 has 5 roots inside |z| < 2. O

(2) Let f:H — C be a holomorphic function which satisfies:

|f(z)] <1 and f(i) =

Prove that for all z € H,
|z — il
|z + 1]

|f(2)] <

Proof. First let us recall that G(z) = z;j is a biholomorphism I — H and G(0) = i. We then notice that
foG:D — Dand f(G(0)) = 0. It follows from Schwarz’s lemma that |f o G(z)| < |z|. To complete the
proof, recall that the inverse biholomorphism to G is the map F(z) = so replaciing z with F(z) we see

z+z’
that
|foG(F(2))| < [F(2)]
|2 — i
<
7@l <
as required. O

(5) Let R be the parallelogram with vertices (0,0), (1,1), (3,0), and (2, —1). Evaluate the integral

// (z +2y)%e” VdA

Proof. Let us begin by doing a change of basis so that the vectors in the direction of the sides of the
parallelogram become our new basis vectors. Indeed we see that x =y =0 and —1/22 —y =2 + 2y = 0 are



the expressions for 2 of our lines and then z —y = 3 and x + 2y = 3 are the expressions for the second two.
We then let ©w = r — y and v = x + 2y and the bounds of integration change to 0 to 3 in both variables. We
now need to compute the determinant of the Jacobian: notice y = £ (v — u) and = %(2u + v) so that

2/3  1/3
det (_1/3 1/3) =1/3

//(m—l—QnyydA //vefdudv
:/0 v (e3 —1);d

=3(e* - 1)

then our integral becomes

IX Fall 2021

(2) Use calculus of residues to explicitly compute fo Tzwdr. Here n > 2 is a positive integer.

Proof. Let us consider the following complex function f(z) = Our goal will be to integrate f(z)

n
14227 _
over the sector going from 0 to R along the real axis and then across the arc o parameterized by Re®® with
6 € [0,7/n]. Then we go back to the origin along the line L parameterized by te™/" with t € [R,0]. Now
notice that on «,

n

as R — oo so fa f(2)dz =0 in the limit. Now we seek to compute the integral over L.

[r = [ e e
I z)az = 0 1+t2ne2‘n’ie

Thus in the limit as R — oo, we see that e™" fo 1+x2" = [, f(

Next we need to check if f has any poles in the interior of the contour . Indeed we see that at e™/2",
(e’”ﬁ")Q" —1=¢>"—1=0, so f has a pole at e™/2"_and that this is the only point in the interior of ~ for
which f(z) has a pole. Let us evaluate the residue at this pole (and notice additionally that this pole has
order 1.

(Z _ e‘n’i/2n>zn

=A

Res xijzn = lim ~—F 2"
¢ z—se™i/2n 14 z2n

To compute A, we can apply L’Hopitals rule since the numerator and denominator converge to 0. Then we

can compute
/ f(z der/f Ydz = 2miA

/ f(2)dz + emi/m f dz = 2miA
0

0

2miA
/ 'f 1 + eﬂ'z/n



O

(83) Let Dy ={z€C||z| <1}. f:Dy— C is holomorphic on Dy and satisfies |f(z)| < log(1/|z|) for any
z € Dgy. Prove that f =0.

Proof. We see that el/(*) < 1/|z| for all 2 € Dy. We then notice that as |z| — 1, that |f(z)| — 0, however
the maximum modulus principle then tells us that f must be zero on the entire disk Dy. O

(8) Let D={z€C||z| <1}. f:D — C is holomorphic, injective, and satisfies f’(0) = 1. Prove that the
area f(D) is at least .

Proof. Green’s theorem tell us that we can measure the area of a subset €2 of the plane by

/ xdy = — / ydx
o0 o0
1 _ . 1 _
/ dA:(—/ zydx+z/ ydac):,/ zdz
Q 2 a0 o0 2i Jaq

where z = x + iy. Since f is conformal onto its image, we can make a change of variables to see that

thus

Area(f(D)) = l %f’(z)dz

21 oD

from here we can expand in a power series

%/Dmf’(z)dz = % - ( Oolanz”> (i: nanz"> dz

n= m=1
1 2w o0 1 )
= 5/ Z@akrkdﬁ + 3 Z / ﬂame(m—n)lersde
0 k= m#n oD
00
= WZ lag|?r* 40
k=1

since fo% elm=m)70dp = 0 when m # n.

oo
=7r+ WZ lag|?r*
k=2

now taking the limit as » — 1, we obtain

o0
= 7T+7TZ|ak|2
k=2

and we are done. O

X August 2022

(1) Show that In(z? +y?) is a harmonic function in C\0. Find a conjugate harmonic function of u(x,y) in
C\{z | < 0}. Show that it does not have a conjugate harmonic function in C\{0}.



Proof. Indeed we see that

02 2(x? + y?) — 4a? 0? 2(x? + y?) — 4y?
1 2 2 = 1 2 2 —
n(z® + y*) @+ 7)? 2 n(z® +y°) (22 + 12)2

Ox2

so Aln(z? +y?) = 2(1(1'51?2;;“’2 + 2(90(1451?2_)21952 = 0 and we conclude that In(2? + y?) for all (z,y) # (0,0).
Notice that in polar coordinates In(z%+y?) = In(R?) = In|z|. Taking a branch of the logarithm as prescribed

by the exercise gives us that

log(z) = log|z| + 0
and we see that the conjugate harmonic function is simply arg(z).

Recall that the conjugate harmonic is unique up to a constant, but this implies then that log(z) would
be holomorphic on C\{zp}, but this is not true. O

—d
/_oo T4+t

Proof. Let us consider the following function f(z) = % Consider the integral fv f(z)dz where 7 is
the closed upper semicircle of radius R > 10 going first from —R to R and then along the upper arc «
parameterized by Re? with 6 € [0, 7].

2

Notice that
2
Zidz <7TRR7—)O as R — oo
o l+2t

(2) Evaluate the following integral

- R*—1

so in the limit as R — oo, fR %dm = fv f(2)dz. Notice that f has two simple pole contained in v. Let us
compute the residues:

eiTr/?
ReSem/4 f=

(the reader can finish this computation) Then we see that

x2 .

O
(3)
XI January 2023
(1) Leta,b>0,a#b. Find [*_ %dz by using residue calculus.
Proof. First notice that [~ #&ilwz)daﬁ = R [%_ f(2)dz where f(z) = W Notice that

f(2) has two poles in the upper half plane at ia and ib. Let R > max{a,b}. We want to compute the
integral fv f(2)dz where ~ is the semicircle starting at —R going to R and then via the upper semicircle «

10



parameterized by Re', 6 € [0,7]. Now let us compute the integral of a,

iRe™dp

|/ R2627,9 + a2)(R2e2z0 + b2
—Rbln(@)

< 7R sup
0€[0,m] R +p(R)

—0 asR— o0

degp < 4

therefore in the limit [ f(z)dz — 0 as R — oo and so
/ f(2)dz = 2mi(Resiaf + Resipf

Computing both of the resides leaves us with

e~ @ —b

ReSiaf = m s

thus

[ e =y + b(a’f—bb?)]

which is real so we conclude that

/_O:o (22 + Zzi((i)z + b2)dx =7 L(b‘;—a«ﬁ) * b(as_jb?)]
O]

(2) Aispurely imaginary. Prove that z = )\—%622 has exactly one solution in the strip S = {z+iy | |z| < 1}.

Proof. We want a solution to 0 =z — A — %e"ﬁ.
Notice that 1 1
2 2 2 e 2 2
—ef|=ze"eV < -V <eV <1
‘3 | 3 -3 -

since 2 > 0. Now notice that on the rectange centered at z— A, which goes from (—1, —R—\) to (1, —R—\)
o(1,R—A)to (—1,R—A) for all R > 10, |z — A| > 1, thus by Rouche’s theorem, on the interior of the

rectange Rectr, z— A and z — A+ %eZQ have the same number of solutions. For all R sufficiently large, we see

that z — X\ has exactly one solution at z = A € S, thus the expression z = \ — ge * has exactly one solution

in S. O

(3) Let D ={z] |z <1} and A ={z € C|0 < argz < Z}. Find an explicit biholomorphic map
FiD—s A

Proof. First recall that the map G(z) = i +1 is a biholomorphism from D to the upper half plane H. Now
recall that the map g, (z) = 2%, 0 < o < 2, defined on the branch cut where the positive real axis is deleted
is a biholomorphism from H to the sector S = {z | 0 < argz < an}. Now select & = 2/5 and we see that
the composition g3/, o G'is a biholomorphism from the unit disk to the sector A. O

(4) LetS={x+iy|-1<z<1}. f:S— Cis bounded continuous function that is holomorphic on the
interior of S. For —1 << <1let M(x) = sup,cg | f(x + iy)|.

11



(A) Suppose M(1),M(—1) < 1. Prove that |f(z)] <1 for any z € S.

Proof. Consider the function
1
fo= 1)
We see that as ¢ — 0, fo — f uniformly on S. Notice also that for any z, as y — oo, |fe(z + iy)| <
M|

—1_&& — 0, where M = sup, g |fe(2)|.

Let R > 0 be large enough so that for y > R, |f-(z+1iy)| < 1. We can then apply the maximum modulus
principle to SN {z + iy | |y| < R}. We see then that f. can only obtain its maximum on the boundary and

by the decay that f. possesses in y, we see that the maximum will occur on z = —1 or x = 1. Now ¢ — 0 we
see that f attains its maximum on z = —1 or z = 1 and therefore sup, g |f(2)| = max{M (1), M(-1)} < 1.
O

XII August 2023

(1) Use Green’s theorem to evaluate the integral

/ V1 +er*dx + dxydy
c

where C' is the boundaary of the triangle with vertices (0,0), (1,0), (1, 3).

[ i iy = [ 22224

op_ 00
oy or

Proof. Recall Green’s theorem:

Notice that

Then by Green’s theorem

/ V14 e dy + dxydy = // 4ydA
c

1 3x
:/ / dydydzx
o Jo
1
/ 182%dx
0

=6
O
(2) Assume ¢ > 0 and compute
/ cos(2mz€) i
R IEQ —+ ].
Proof. First let us consider the complex function f(z) = e:—:_i and notice that R( [, f(z)dz) = [ COS(ZQ_:TE dx

as 2™ = cos(2mx€) 4 isin(27z€). Now consider the closed upper semicircle centered at the origin going
from —R to R along the real axis and then traveling along the arc Re? with 6 € [0,x]. Call the contour
and the upper arc of the semicircle o then notice

Lﬂ@=4ﬂdw+4fww
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and by the residue theorem
/ f(z) =2mi Z Rest(z)
2l z

Notice that the only pole in the interior of the curve +y is a simple pole located at ¢ and possesses the residue

) ) (Z _ 1)e27rlz§ e—27r§
Res =1 _
est() = 5079~ 3

Now let us integrate [ f(z)dz in the limit as R — oo:

27\'15R619 )
/ f(z)dz) / — __iRe"dp

1_|_R2 26
727r§Rsin(0)

<Rm sup ————
0€[0,7] R?2 -1

notice that for any value of 6 € [0, 7], sin(f) > 0 so the exponent must be negative, thus in the limit as
R — oo the expression will tend to zero and we see that

Thus in the limit as R — oo we have

/ f(2)dz = me27¢
R

/ coséwaf)dx _
R T4 + 1

and taking the real part we see that

as required.

O

(3) Does there exist a holomorphic surjection from the open unit disk D to the whole complex plane C?
If so, provide one; if not, prove that it does not exist.

Proof. First we use a biholomorphism F : D — S where S = {(x,y) | * > —1}. The existence of such
a biholomorphism is guaranteed by the Riemann mapping theorem. Now I claim that the following map
g: S — C defined by z — 22 is surjective. Indeed any number in the closed right half plane can be written
as Re' with 0 € [-7/2,7/2] and so g(Re?) = R?e"?? where now R € [0,00) and # € [—, 7, thus this map
is surjective as the closed right half plane is a subset of S. It then follows that the composition go F': D — C
is a holomorphic surjection from the disk to the entire complex plane. O

(4) Let {z1,...,2,} be points on the unit circle in the complex plane. Prove that there exists a point z on
the unit circle such that .
1= H |z — 2z
k=1

Proof. Consider the function f(z) = [[,_,(z — 2x), this is clearly holomorphic on an open set containing the
closed unit disk. Notice that |f(0)| = [[,_; | — zx| = 1 so by the maximum-modulus principle there exists a
point w € D such that |f(w)| > 1. Now since S* is compact and |f| : S' — Rxq is continuous, |f(w)| > 1
and |f(z;)| = 0 for any k, it follows from the intermediate value theorem that there exists a point z € D
such that |f(z)] =1 as required. O
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(5) Let A = {1 < |2] <2} and B = {1 < [z] < 3}. Show that there is no holomorphic function
f + A — B such that f extends continuously to the closure A to B and f({|z| = 1}) =C {|z| = 1} and

F{lzl =2})  {]2] = 3}.
Proof. Assume such a map f exists. Then notice that In|f| is a harmonic function on A. Let

In(3)

In |z]

and notice that u(z) = 0 when |z| = 1 and |z| = 2, so the maximum-modulus principle for harmonic functions
tells us that u(z) = 0 on A. We then see that |f(z)| = |2|™3/™2. Now for any 2y € A we can find ¢ > 0
such that f(z) = ¢??2"3/2 (working on a suitable branch of the logarithm). Since we could do this for all

2 € A it follows that L&) = M for all z € A. Then if we integrate both sides of the expression along

f(z)
f'(z), [ (In3/In2) ;
Lf(z) dz—[/z d

we see that the right hand size is 27i(In3/1n2). However, I claim that the LHS is an integer multiple of 27i
which would yield a contradiction.

a circle of radius 3/2

Replacing f(z) with w we make a change of variables

!
1
/ () dz = / —dw
5 [(2) oy W
By continuity, either f(v) is a point or a closed loop in the annulus and so ff(ﬂ/) idw = 27n for some n € Z
and we have reached the desired contradiction. O

14



	August 2014
	January 2015
	January 2016
	August 2017
	January 2018
	August 2018
	August 2020
	January 2021
	Fall 2021
	August 2022
	January 2023
	August 2023

