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I August 2014

(1) Use contour integration to show that for all a > 0,∫ ∞

−∞

cos(ax)

x2 + 1
dx = πe−a.

justify any limits and integrals

Proof. Consider the complex function

f(z) =
eaiz

1 + z2

notice that

ℜ
∫ ∞

−∞
f(z)dz =

∫ ∞

−∞

cos(ax)

x2 + 1
dx

so it suffices to compute ℜ
∫∞
−∞ f(z)dz. Consider the closed upper semicircle γ centered at the origin going

from −R to R along the real axis, where R >> 1. Then the residue theorem tells us that

1

2πi

∫
γ

f(z)dz =
∑

Reszf

Notice that f(z) has a simple pole at z = i and no other poles inside the region in question for any such
large value of R.

Resif = lim
z→i

(z − i)eiaz

(z − i)(z + i)
=

e−a

2i

It remains now to show that the contribution of the upper arc α of the semicircle parameterized by z(θ) = Reiθ

with θ ∈ [0, π] contributes no part to the integral. Indeed,∣∣∣∣∫
α

f(z)

∣∣∣∣ dz =

∫ π

0

eiaReiθRieiθ

1 +R2e2iθ
dθ

≤ sup
θ∈[0,θ]

Re−aR sin θ

R2 − 1

as R → ∞, it is clear that since a > 0 that Re−aR sin θR2 − 1 → 0 for any value of θ ∈ [0, θ] (since sin(θ) ≥ 0
for θ ∈ [0, π]).

Thus in the limit as R → ∞,
∫
α
f(z)dz → 0 so∫ ∞

−∞
f(z)dz = 2πie−a/2i = πe−a

Taking the real part we see that ∫ ∞

−∞

cos(ax)

x2 + 1
dx = πe−a

as required.

(2) Let f(x) be a continuously differentiable real-valued function over (−∞,∞) with f(0) = 0. Suppose
that |f ′(x)| ≤ |f(x)| for all x ∈ (−∞,∞).
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(a) Show that f(x) = 0 for all x in a neighborhood (−ϵ, ϵ) of 0, for some ϵ > 0.

Proof. Consider the interval [0, 1/2]. Since this interval is compact and f is continuous, f attains a maximum
on this interval, call it M . Then notice that M ≥ |f(x)| ≥ |f ′(x)| for all x ∈ [0, 1/2]. by application of the
mean value theorem we see that

|f(x)| = |f(x)− f(0)| = |f ′(c)(x− 0)| ≤ Mx ≤ M/2

from which we see that M/2 ≤ M so M must be zero. By the same process we see that on [−1/2, 0],
f(x) = 0.

(b) Show that f(x) = 0 for all x ∈ (−∞,∞).

Proof. We can show this inductively on succesive intervals [n/2, (n+ 1)/2]. Since the base case was done in
the part (a) assume that f(x) = 0 on [n/2, (n+1)/2], then we know that f((n+1)/2) = 0 and by compactness
f attains a maximum M on the interval [(n+ 1)/2, (n+ 2)/2]. From this we see that M ≥ |f(x)| ≥ |f ′(x)|
for x ∈ [(n+ 1)/2, (n+ 2)/2] thus by the MVT,

|f(x)− 0| = |f ′(c)(x− (n+ 1)/2| ≤ M(x− (n+ 1)/2) ≤ M/2

and as before we see that M = 0 so f(x) = 0 on [(n+ 1)/2, (n+ 2)/2]. This f(x) = 0 for all x ∈ [0,∞). A
similar argument shows that f(x) = 0 for (−∞, 0].

(3) Let D1 ⊂ C be the open disc centered at i with radius 1, and let D2 ⊂ C be the open disc centered at
3/2i with radius 1/2. Find an explicit biholomorphic map sending Ω = D1 −D2 onto the open unit disc in
C. You may express this solution as a composition of biholomorphic maps so long as each of those maps is
written explicitly.

Proof. First apply a rotation e−πi/2. Then notice that the map F (z) = z−i
z+i which is the Cayley transform

that maps conformally H to D will map the line {x + i | x ∈ R} to the circle centered at 1/2 with radius
1/2. A simple computation verifies that F (2i) = 1/3 lies inside this circle and so everything in the strip
S = {x + iy | y ∈ (0, 1)} is mapped into e−πi/2(Ω). Since F is conformal restrcited to S, apply the inverse
G : eπi/2(Ω) → S. Then we apply log(πz) which is a conformal map from S to H. Finally we apply the map
F : H → D. The explicit map then will be

F ◦ log(π·) ◦G ◦ e−πi/2 : Ω → D

as required.

II January 2015

III January 2016

(4) Suppose f is an entire function with
∫ ∫

C |f(z)|2dxdy < ∞. Show that f(z) = 0 for all z ∈ C.

Proof. Let g(z) = f2(z). Since |g(z)| = |f(z)|2, and g is holomorphic on C, it suffices to show that if∫ ∫
C |g(z)|dxdy < ∞, then g is zero. Recall the mean value theorem which tells us that

g(0) =
1

2π

∫ 2π

0

g(reiθ)dθ
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for any r > 0 since g is entire. Then multiply both sides by r and integrate from 0 to R∫ R

0

g(0)rdr =
1

2π

∫ R

0

∫ 2π

0

g(reiθ)rdθdr

g(0) =
1

R2π

∫ R

0

∫ 2π

0

g(reiθ)rdθdr

=
1

πR2

∫∫
DR(0)

g(z)dxdy

then |g(0)| ≤ 1
πR2

∫∫
DR(0)

|g(z)|dxdy and in the limit as R → ∞,
∫∫

DR(0)
|g(z)|dxdy →

∫∫
C |g(z)|dxdy < ∞

and so |g(0)| ≤ 1
πR2

∫∫
C |g(z)|dxdy → 0. Thus |g(0)| = 0. We can repeat this procedure to evaluate |g(z)|

for any z ∈ C to show that |g(z)| = 0. Thus g(z) = 0.

IV August 2017

(3)

(A) Let B = {(x, y) | x2 + y2 < 1} and let u(x, y) be a harmonic function defined on some open set U
containing the closure of B. Prove that

u(0, 0) =
1

π

∫
B

u(x, y)dxdy

Proof. Notice that the statement implies that u(x, y) is harmonic in an open ball of radius R > 1 containing
B, then the mean value theorem of harmonic functions which states that

u(0) =
1

2π

∫ 2π

0

u(ρeiθ)dθ

for any 0 < ρ ≤ 1 < R. Multiplying by ρ and integrating both sides from 0 to 1∫
u(0)ρdρ =

1

2π

∫ 1

0

∫ 2π

0

u(ρeiθ)ρdθdρ

u(0)

2
=

1

2π

∫
B

u(x, y)dxdy

as required.

(B)

V January 2018

(1) Let λ > 1 be a real number. Show that the equation zeλ−z = 1 has a real solution in the unit disk,
and that there are no other solutions in the unit disk.

Proof. First let us notice that eλ−z ̸= 0 for all z thus zeλ−z = 1 if and only if z = ez−λ. Now the
function f : [−1, 1] → R, f(x) = x − ex−λ has the following properties: f(−1) = −1 − e−(x+λ) < 0 and
f(1) = 1 − e1−λ > 0 since λ > 1, thus by the intermediate value theorem there exists c ∈ [−1, 1] such that
f(x) = 0.

To show that there are no other solutions in the unit disk, let us notice that for all z ∈ D

|ez−λ| ≤ eℜ(z)−λ < 1 since λ > 1 and ℜ(z) < 1
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moreover |z| = 1 for all z on the unit circle so by Rouche’s theorem z and z − eλ−z have the same number
of zeros in the unit circle D. Since z has a unique zero at the origin, this tells us that the real solution we
found in the first part of this problem is the only solution in the unit disk.

(2) Let γ(t) : [0, b] → C be a piecewise differentiable smooth function describing a curve Γ in the complex
plane

(A) For a ̸= Γ, let

h(u) =

∫ u

0

γ′(t)

γ(t)− a
dt

Differentiate e−h(u)(γ(u)− a) and prove that eh(u) = h(u)−a
h(0)−a for all 0 ≤ u ≤ b.

Proof. First

d

du
e−h(u)(γ(u)− a) = −h′(u)eh(u)(γ(u)− a) + e−h(u)γ′(u)

and notice by the fundamental theorem of calculus that h′(u) = d
du

∫ u

0
γ′(t)

γ(t)−adt =
γ′(u)

γ(u)−a so

= − γ′(u)

γ(u)− a
eh(u)(γ(u)− a) + e−h(u)γ′(u)

= (γ′(u)− γ′(u))eh(u) = 0

thus e−h(u)(γ(u) − a) = k for some constant k. To determine this constant notice that e−h(0)(γ(0) − a) =
γ(0)− a and so we see that

eh(u) =
γ(u)− a

γ(0)− a

as required.

(B) Use (A) to show that if Γ is a closed path then
∫
Γ
(z − a)−1dz is an integer multiple of 2πi. Show

that this integral is zero if Γ is contained in the interior of a disk not containing a.

Proof. ∫
Γ

1

z − a
dz =

∫ b

0

γ′(t)

γ(t)− a
dt = h(b)

Notice then by part (A) that

eh(b) =
γ(b)− a

γ(0)− a
= 1

since γ(b) = γ(0) as Γ is a closed curve. We then see that h(b) = n2πi for n ∈ Z. The last conclusion follows
from the fact that 1/(z − a) is holomorphic for all z ̸= a and so by Cauchy’s theorem must vanish if Γ is
contained in a closed disk not containing a.

(4) Define D = {z ∈ C | 2 < |z| < 3}. Let f be a holomorphic function over D that is continuous over D.
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(A) Suppose that max|z|=2 |f(z)| ≤ 2 and max|z|=3 |f(z)| ≤ 3. Prove that |f(z)| ≤ |z| on D.

Proof. Consider the map g(z) = f(z)
z . Notice that since f(z) is nonvanishing, that g(z) is holomorphic on

D. Thus for all |z| = 2,

|g(z)| = |f(z)|
|z|

≤ 2

2
= 1

and similarly when |z| = 3,

|g(z)| = |f(z)|
|z|

≤ 3

3
= 1

so we then apply the maximum-modulus principle to g(z), where we see that |g(z)| ≤ 1 for all z ∈ D. Thus

|f(z)| ≤ |z|

for all z ∈ D.

(B) Suppose that |f(z)| = |z| for |z| = 2 and |z| = 3. Suppose furthermore that f(z) does not have
any zeros in D. Prove that f(z) = eiθz for some constant θ ∈ [0, π].

Proof. Let us define the following function

h(z) = ln |f(z)| − ln |z|

and notice that this function is harmonic on D. Furthermore, we see that when |z| = 2, that |h(z)| =
ln |2| − ln |2| = 0 and similarly when |z| = 3 that |h(z)| = ln |3| − ln |3| = 0. We conclude then by the
maximum-modulus principle for harmonic functions that h(z) = 0 on D, thus

ln |f(z)| = ln |z|

and so |f(z)| = |z|. Thus f(z) = eiθz as required.

VI August 2018

(1) Let U be a connected domain in C.

(A) Let h(z) be harmonic on U , and f : U → U be a holomorphic function. Prove that h ◦ f is a
harmonic function on U .

Proof. Recall that ∆ = 4 ∂
∂z

∂
∂z . Now applying the complex chain rule,

∂(h ◦ f)
∂z

=
∂h

∂z

∂f

∂z
+

∂h

∂z

∂f

∂z

since f is holomorphic the first term disappears, so ∂(h◦f)
∂z = ∂h

∂z
∂f
∂z . Now

∂

∂z

∂(h ◦ f)
∂z

=
∂

∂z

(
∂h

∂z

∂f

∂z

)
=

(
∂

∂z

∂h

∂z

)
∂f

∂z
+

∂h

∂z

(
∂

∂z

∂f

∂z

)
The first term is zero since h is harmonic, and the second term is zero since f is antiholomorphic and
therefore

∂

∂z

∂f

∂z
=

∂

∂z

∂f

∂z
= 0

thus h ◦ f is harmonic.
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(B) Let h(z) be a real valued harmonic function on U such that (h(z))2 is also a harmonic function on
U . Prove that h(z) must be constant.

Proof. First let us define h̃(z) = h(z)−h(w) for some fixed w ∈ U . Now notice that h̃ is harmonic and h̃2 is
also harmonic and remains real valued. Now since the image of h̃ is entirely real, it follows that the image
of −h̃2 is contained in R≤0. Now furthermore notice that −h̃2(w) = 0 is a maximum of the function on U ,

which by the maximum modulus principle for harmonic functions implies that h̃2(z) = 0 for all z and hence
h(z) = h(w) is constant.

(2) Let z1 ̸= z2 ∈ C.

(A) Construct all Biholomorphic maps of the complex plane which have z1 and z2 as their fixed points.

Proof. Biholomorphic maps on C are contained in the set of injective entire functions, but this set consists
of only the linear maps f(z) = az + b with a ̸= 0. To see this notice that f(1/z) cannot be a removable
singularity since otherwise f would be bounded and hence constant by Liouville’s theorem. f(1/z) cannot
be an esential singularity since the Casorati-Weierstrass theorem implies that for any open set containing
0, f(1/z) is dense, thus implying that f is not injective. Lastly, we see that f has a pole at infinity. Since
f has no other poles, it follows that f(z) = (az + b)n. In order for f to remain injective, n = 1, thus
f(z) = az + b, a ̸= 0. Since linear maps of the form az + b, a ̸= 0, are surjective, it follows that these are all
of the biholomorphisms of C. Now if z1 = az1 + b and z2 = az2 + b. If a ̸= 1, then

z1 =
b

1− a
= z2

which is a contradiction so a = 1, then z1 = z1 + b implying that b = 0 so the only biholomorphism of C
fixing both z1 and z2 is the identity map f(z) = z.

(B) Construct all biholomorphisms of Ĉ such that z1 and z2.

Sketch of Proof

Recalling that the automorphisms of C∪ {∞} are {az+b
cz+d | a, b, c, z ∈ C, ad− bc = 1}. Now in order to fix

z1 and z2 we obtain the following additional linear constraints.

cz22 + dz2 − az2 − b = 0

cz21 + dz1 − az1 − b = 0

All together we have three independent constraints and 4 unknowns which implies that the solution space is
one dimensional. It is easy to find biholomorhpisms which send z1 to 0 and z2 to ∞, and then construct its

inverse. Let A,A−1 denote such a transformation. We then see that A−1 ◦ eiθ ◦A : Ĉ → Ĉ are all conformal
maps fixing z1 and z2 for any value of θ. These are all of them as we have a 1-dimensional space worth of
solutions.

VII August 2020

(5) Let f be holomorphic on a neighborhood of the closed unit disk centered at the origin. Assume that
|f(z)| = 1 on |z| = 1, , and is not a constant on the disc. Prove that there exist a positive integer k,
points α1, . . . , αk, in the open unit disk positive integers m1, . . . ,mk, and positive integers m1, . . . ,mk, and
a complex number β such that

f(z) = β

k∏
i=1

(
z − αi

1− αi

)mi

for all z ∈ D.
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Proof. Since f(z) is analytic in an open neighborhood of the disk, |f(z)| → 1 uniformly as |z| → 1, thus there
is some r > 1 such that |f(z)| > 0 for all z ∈ {z | r < |z| < 1}. It follows then that f can only have a finite
number of zeros in the disk as otherwise the set of zeros would contain a limit point (by Bolzano-Weierstrass)
and by uniqueness of analytic continuuation would be the zero function. Let α1, . . . , αk be those zeros and
let m1, . . . ,mk be the multiplicities of those zeros, then

g(z) =

k∏
i=1

(
z − αi

1− αi

)mi

is an analytic function on the disk such that |f(z)|1 on |z| = 1. We then want to show that all such g with
those prescribed zeros and multiplicities is equivalent to g(z) up to rotation. Let h(z) be another function
which has the same zeros and multiplicities, then h(z)/g(z) and g(z)/h(z) are both analytic functions on
the disk with norm one on |z| = 1, thus maximum modulus tells us that |h(z)| ≤ |g(z)| and |g(z)| ≤ |h(z)|,
so |g(z)| = |h(z)| and we see that h(z) = βg(z) for some |β| = 1.

VIII January 2021

(1) Prove that all 5 roots of 2z5 + 8z − 1 lie in the disk |z| ≤ 2 but only one root lies inside |z| < 1.

Proof. First let us see that for z ∈ {|z| = 1}, |2z5 − 1| ≤ 2|z|5 +1 = 3 and |8z| = 8 for all z ∈ {|z| = 1}, thus
by Rouche’s theorem, 8z and 2z5 + 8z − 1 have the same number of zeros inside |z| < 1. Since 8z = 0 when
z = 0 is the only zero in |z| < 1, it follows that 2z5 + 8z − 1 has one zero inside |z| < 1.

Now on |z| = 2, |8z − 1| ≤ 8|z| + 1 = 17 and |2z5| = 2|z|5 = 26 = 64 so by Rouche’s theorem 2z5 and
2z5 + 8z − 1 have the same number of zeros in |z| < 2. Since 2z5 = 0 for all 5 roots of unit which have
modulus 1 it follows that 2z5 + 8z − 1 has 5 roots inside |z| < 2.

(2) Let f : H → C be a holomorphic function which satisfies:

|f(z)| ≤ 1 and f(i) = 0

Prove that for all z ∈ H,

|f(z)| ≤ |z − i|
|z + i|

Proof. First let us recall that G(z) = i i−z
i+z is a biholomorphism D → H and G(0) = i. We then notice that

f ◦ G : D → D and f(G(0)) = 0. It follows from Schwarz’s lemma that |f ◦ G(z)| ≤ |z|. To complete the
proof, recall that the inverse biholomorphism to G is the map F (z) = i−z

i+z , so replaciing z with F (z) we see
that

|f ◦G(F (z))| ≤ |F (z)|

|f(z)| ≤ |z − i|
|z + i|

as required.

(5) Let R be the parallelogram with vertices (0, 0), (1, 1), (3, 0), and (2,−1). Evaluate the integral∫∫
R

(x+ 2y)2ex−ydA

Proof. Let us begin by doing a change of basis so that the vectors in the direction of the sides of the
parallelogram become our new basis vectors. Indeed we see that x = y = 0 and −1/2x− y = x+ 2y = 0 are
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the expressions for 2 of our lines and then x− y = 3 and x+ 2y = 3 are the expressions for the second two.
We then let u = x− y and v = x+ 2y and the bounds of integration change to 0 to 3 in both variables. We
now need to compute the determinant of the Jacobian: notice y = 1

3 (v − u) and x = 1
3 (2u+ v) so that

det

(
2/3 1/3
−1/3 1/3

)
= 1/3

then our integral becomes ∫∫
R

(x+ 2y)2ex−ydA =

∫ 3

0

∫ 3

0

v2eu
1

3
dudv

=

∫ 3

0

v2(e3 − 1)
1

3
dv

= 3(e3 − 1)

IX Fall 2021

(2) Use calculus of residues to explicitly compute
∫∞
0

xn

1+x2n dx. Here n ≥ 2 is a positive integer.

Proof. Let us consider the following complex function f(z) = zn

1+z2n . Our goal will be to integrate f(z)

over the sector going from 0 to R along the real axis and then across the arc α parameterized by Reiθ with
θ ∈ [0, π/n]. Then we go back to the origin along the line L parameterized by teπi/n with t ∈ [R, 0]. Now
notice that on α, ∣∣∣∣∫

α

f(z)dz

∣∣∣∣ ≤ Rn

R2n − 1
→ 0

as R → ∞ so
∫
α
f(z)dz = 0 in the limit. Now we seek to compute the integral over L.∫

L

f(z)dz = −
∫ R

0

tneπi

1 + t2ne2πi
eπi/ndt

= eπi/n
∫ R

0

tn

1 + t2n
dt

Thus in the limit as R → ∞, we see that eπin
∫∞
0

xn

1+x2n dx =
∫
L
f(z)dz.

Next we need to check if f has any poles in the interior of the contour γ. Indeed we see that at eπi/2n,
(eπi/2n)2n− 1 = e2πi− 1 = 0, so f has a pole at eπi/2n, and that this is the only point in the interior of γ for
which f(z) has a pole. Let us evaluate the residue at this pole (and notice additionally that this pole has
order 1.

Reseπi/2n = lim
z→eπi/2n

(z − eπi/2n)zn

1 + z2n
= A

To compute A, we can apply L’Hopitals rule since the numerator and denominator converge to 0. Then we
can compute ∫ ∞

0

f(z)dz +

∫
L

f(z)dz = 2πiA∫ ∞

0

f(z)dz + eπi/n
∫ ∞

0

f(z)dz = 2πiA∫ ∞

0

f(z)dz =
2πiA

1 + eπi/n
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(3) Let D0 = {z ∈ C | |z| < 1}. f : D0 → C is holomorphic on D0 and satisfies |f(z)| ≤ log(1/|z|) for any
z ∈ D0. Prove that f ≡ 0.

Proof. We see that e|f(z)| ≤ 1/|z| for all z ∈ D0. We then notice that as |z| → 1, that |f(z)| → 0, however
the maximum modulus principle then tells us that f must be zero on the entire disk D0.

(5) Let D = {z ∈ C | |z| < 1}. f : D → C is holomorphic, injective, and satisfies f ′(0) = 1. Prove that the
area f(D) is at least π.

Proof. Green’s theorem tell us that we can measure the area of a subset Ω of the plane by∫
∂Ω

xdy = −
∫
∂Ω

ydx

thus ∫∫
Ω

dA =
1

2

(
−
∫
∂Ω

iydx+ i

∫
∂Ω

ydx

)
=

1

2i

∫
∂Ω

zdz

where z = x+ iy. Since f is conformal onto its image, we can make a change of variables to see that

Area(f(D)) =
1

2i

∫
∂D

f(z)f ′(z)dz

from here we can expand in a power series

1

2i

∫
D

f(z)f ′(z)dz =
1

2i

∫
∂D

( ∞∑
n=1

anz
n

)( ∞∑
m=1

nanz
n

)
dz

=
1

2

∫ 2π

0

∞∑
k=1

akakr
kdθ +

1

2

∑
m ̸=n

∫
∂D

aname(m−n)iθrsdθ

= π

∞∑
k=1

|ak|2rk + 0

since
∫ 2π

0
e(m−n)πθdθ = 0 when m ̸= n.

= πr + π

∞∑
k=2

|ak|2rk

now taking the limit as r → 1, we obtain

= π + π

∞∑
k=2

|ak|2

and we are done.

X August 2022

(1) Show that ln(x2 + y2) is a harmonic function in C\0. Find a conjugate harmonic function of u(x, y) in
C\{x | x ≤ 0}. Show that it does not have a conjugate harmonic function in C\{0}.
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Proof. Indeed we see that

∂2

∂x2
ln(x2 + y2) =

2(x2 + y2)− 4x2

(x2 + y2)2
∂2

∂y2
ln(x2 + y2) =

2(x2 + y2)− 4y2

(x2 + y2)2

so ∆ ln(x2 + y2) = 2(x2+y2)−4y2

(x2+y2)2 + 2(x2+y2)−4x2

(x2+y2)2 = 0 and we conclude that ln(x2 + y2) for all (x, y) ̸= (0, 0).

Notice that in polar coordinates ln(x2+y2) = ln(R2) = ln |z|. Taking a branch of the logarithm as prescribed
by the exercise gives us that

log(z) = log |z|+ iθ

and we see that the conjugate harmonic function is simply arg(z).

Recall that the conjugate harmonic is unique up to a constant, but this implies then that log(z) would
be holomorphic on C\{z0}, but this is not true.

(2) Evaluate the following integral ∫ ∞

−∞

x2

1 + x4
dx

Proof. Let us consider the following function f(z) = z2

1+z4 . Consider the integral
∫
γ
f(z)dz where γ is

the closed upper semicircle of radius R > 10 going first from −R to R and then along the upper arc α
parameterized by Reiθ with θ ∈ [0, π].

Notice that ∣∣∣∣∫
α

z2

1 + z4
dz

∣∣∣∣ ≤ πR
R2

R4 − 1
→ 0 as R → ∞

so in the limit as R → ∞,
∫
R

x2

1+x4 dx =
∫
γ
f(z)dz. Notice that f has two simple pole contained in γ. Let us

compute the residues:

Reseiπ/4 f =
eiπ/2

(the reader can finish this computation) Then we see that∫
R

x2

1 + x4
dx = 2πi(A+B)

(3)

XI January 2023

(1) Let a, b > 0, a ̸= b. Find
∫∞
−∞

cos(x)
(x2+a2)(x2+b2)dx by using residue calculus.

Proof. First notice that
∫∞
−∞

cos(x)
(x2+a2)(x2+b2)dx = ℜ

∫∞
−∞ f(z)dz where f(z) = eiz

(z2+a2)(z2+b2) . Notice that

f(z) has two poles in the upper half plane at ia and ib. Let R > max{a, b}. We want to compute the
integral

∫
γ
f(z)dz where γ is the semicircle starting at −R going to R and then via the upper semicircle α
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parameterized by Reiθ, θ ∈ [0, π]. Now let us compute the integral of α,∣∣∣∣∫
α

f(z)

∣∣∣∣ =
∣∣∣∣∣
∫ π

0

eiReiθ

(R2e2iθ + a2)(R2e2iθ + b2
iReiθdθ

∣∣∣∣∣
≤ πR sup

θ∈[0,π]

e−R sin(θ)

R4 + p(R)
, deg p < 4

→ 0 as R → ∞

therefore in the limit
∫
α
f(z)dz → 0 as R → ∞ and so∫ ∞

−∞
f(z)dz = 2πi(Resiaf + Resibf

Computing both of the resides leaves us with

Resiaf =
e−a

2ai(b2 − a2)
, Resibf =

e−b

2bi(a2 − b2)

thus ∫ ∞

−∞
f(z)dz = π

[
e−a

a(b2 − a2)
+

e−b

b(a2 − b2)

]
which is real so we conclude that∫ ∞

−∞

cos(x)

(x2 + a2)(x2 + b2)
dx = π

[
e−a

a(b2 − a2)
+

e−b

b(a2 − b2)

]

(2) λ is purely imaginary. Prove that z = λ− 1
3e

z2

has exactly one solution in the strip S = {x+iy | |x| ≤ 1}.

Proof. We want a solution to 0 = z − λ− 1
3e

z2

.

Notice that

|1
3
ez

2

| = 1

3
ex

2

e−y2

≤ e

3
e−y2

< e−y2

≤ 1

since y2 ≥ 0. Now notice that on the rectange centered at z−λ, which goes from (−1,−R−λ) to (1,−R−λ)
to (1, R − λ) to (−1, R − λ) for all R > 10, |z − λ| > 1, thus by Rouche’s theorem, on the interior of the

rectange RectR, z−λ and z−λ+ 1
3e

z2

have the same number of solutions. For all R sufficiently large, we see

that z − λ has exactly one solution at z = λ ∈ S, thus the expression z = λ− 1
3e

z2

has exactly one solution
in S.

(3) Let D = {z | |z| < 1} and A = {z ∈ C | 0 < arg z < 2π
5 }. Find an explicit biholomorphic map

f : D → A.

Proof. First recall that the map G(z) = i z−1
z+1 is a biholomorphism from D to the upper half plane H. Now

recall that the map gα(z) = zα, 0 < α < 2, defined on the branch cut where the positive real axis is deleted
is a biholomorphism from H to the sector S = {z | 0 < arg z < απ}. Now select α = 2/5 and we see that
the composition g2/g ◦G is a biholomorphism from the unit disk to the sector A.

(4) Let S = {x+ iy | −1 ≤ x ≤ 1}. f : S → C is bounded continuous function that is holomorphic on the
interior of S. For −1 ≤≤ x ≤ 1 let M(x) = supy∈R |f(x+ iy)|.
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(A) Suppose M(1),M(−1) ≤ 1. Prove that |f(z)| ≤ 1 for any z ∈ S.

Proof. Consider the function

fε =
1

1 + εz
f(z)

We see that as ε → 0, fε → f uniformly on S. Notice also that for any x, as y → ∞, |fε(x + iy)| ≤
M
∣∣∣ 1
1+εz

∣∣∣→ 0, where M = supz∈S |fε(z)|.

Let R > 0 be large enough so that for y ≥ R, |fε(x+ iy)| < 1. We can then apply the maximum modulus
principle to S ∩ {x+ iy | |y| ≤ R}. We see then that fε can only obtain its maximum on the boundary and
by the decay that fε possesses in y, we see that the maximum will occur on x = −1 or x = 1. Now ε → 0 we
see that f attains its maximum on x = −1 or x = 1 and therefore supz∈S |f(z)| = max{M(1),M(−1)} ≤ 1.

XII August 2023

(1) Use Green’s theorem to evaluate the integral∫
C

√
1 + ex2dx+ 4xydy

where C is the boundaary of the triangle with vertices (0, 0), (1, 0), (1, 3).

Proof. Recall Green’s theorem: ∫
C

Pdx+Qdy =

∫∫
∂Q

∂x
− ∂P

∂y
dA

Notice that
∂P

∂y
= 0

∂Q

∂x
= 4y

Then by Green’s theorem ∫
C

√
1 + ex2dx+ 4xydy =

∫∫
4ydA

=

∫ 1

0

∫ 3x

0

4ydydx

=

∫ 1

0

18x2dx

= 6

(2) Assume ξ > 0 and compute ∫
R

cos(2πxξ)

x2 + 1
dx

Proof. First let us consider the complex function f(z) = e2πxξi

z2+1 and notice that ℜ(
∫
R f(z)dz) =

∫
R

cos(2πxξ)
x2+1 dx

as e2πixξ = cos(2πxξ) + i sin(2πxξ). Now consider the closed upper semicircle centered at the origin going
from −R to R along the real axis and then traveling along the arc Reiθ with θ ∈ [0, π]. Call the contour γ
and the upper arc of the semicircle α then notice∫

γ

f(z) =

∫
R
f(z)dz +

∫
α

f(z)dz
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and by the residue theorem ∫
γ

f(z) = 2πi
∑
z

Resf(z)

Notice that the only pole in the interior of the curve γ is a simple pole located at i and possesses the residue

Resf(i) = lim
z→i

(z− i)e2πizξ

(z− i)(z + i)
=

e−2πξ

2i

Now let us integrate
∫
α
f(z)dz in the limit as R → ∞:∣∣∣∣∫

α

f(z)dz)

∣∣∣∣ =
∣∣∣∣∣
∫ π

0

e2πiξReiθ

1 +R2e2iθ
iReiθdθ

∣∣∣∣∣
≤ Rπ sup

θ∈[0,π]

e−2πξR sin(θ)

R2 − 1

notice that for any value of θ ∈ [0, π], sin(θ) ≥ 0 so the exponent must be negative, thus in the limit as
R → ∞ the expression will tend to zero and we see that∫

α

f(z)dz → 0 as R → ∞

Thus in the limit as R → ∞ we have ∫
R
f(z)dz = πe−2πξ

and taking the real part we see that ∫
R

cos(2πxξ)

x2 + 1
dx = πe−2πξ

as required.

(3) Does there exist a holomorphic surjection from the open unit disk D to the whole complex plane C?
If so, provide one; if not, prove that it does not exist.

Proof. First we use a biholomorphism F : D → S where S = {(x, y) | x > −1}. The existence of such
a biholomorphism is guaranteed by the Riemann mapping theorem. Now I claim that the following map
g : S → C defined by z 7→ z2 is surjective. Indeed any number in the closed right half plane can be written
as Reiθ with θ ∈ [−π/2, π/2] and so g(Reiθ) = R2ei2θ where now R ∈ [0,∞) and θ ∈ [−π, π], thus this map
is surjective as the closed right half plane is a subset of S. It then follows that the composition g ◦F : D → C
is a holomorphic surjection from the disk to the entire complex plane.

(4) Let {z1, . . . , zn} be points on the unit circle in the complex plane. Prove that there exists a point z on
the unit circle such that

1 =

n∏
k=1

|z − zk|

Proof. Consider the function f(z) =
∏n

k=1(z− zk), this is clearly holomorphic on an open set containing the
closed unit disk. Notice that |f(0)| =

∏n
k=1 | − zk| = 1 so by the maximum-modulus principle there exists a

point w ∈ ∂D such that |f(w)| ≥ 1. Now since S1 is compact and |f | : S1 → R≥0 is continuous, |f(w)| ≥ 1
and |f(zk)| = 0 for any k, it follows from the intermediate value theorem that there exists a point z ∈ ∂D
such that |f(z)| = 1 as required.
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(5) Let A = {1 < |z| < 2} and B = {1 < |z| < 3}. Show that there is no holomorphic function
f : A → B such that f extends continuously to the closure A to B and f({|z| = 1}) =⊂ {|z| = 1} and
f({|z| = 2}) ⊂ {|z| = 3}.

Proof. Assume such a map f exists. Then notice that ln |f | is a harmonic function on A. Let

u(z) = ln |f(z)| − ln(3)

ln(2)
ln |z|

and notice that u(z) = 0 when |z| = 1 and |z| = 2, so the maximum-modulus principle for harmonic functions
tells us that u(z) = 0 on A. We then see that |f(z)| = |z|ln 3/ ln 2. Now for any z0 ∈ A we can find ε > 0
such that f(z) = eiθzln 3/ ln 2 (working on a suitable branch of the logarithm). Since we could do this for all

z ∈ A it follows that f ′(z)
f(z) = (ln 3/ ln 2)

z for all z ∈ A. Then if we integrate both sides of the expression along

a circle of radius 3/2 ∫
γ

f ′(z)

f(z)
dz =

∫
γ

(ln 3/ ln 2)

z
dz

we see that the right hand size is 2πi(ln 3/ ln 2). However, I claim that the LHS is an integer multiple of 2πi
which would yield a contradiction.

Replacing f(z) with w we make a change of variables∫
γ

f ′(z)

f(z)
dz =

∫
f(γ)

1

w
dw

By continuity, either f(γ) is a point or a closed loop in the annulus and so
∫
f(γ)

1
wdw = 2πn for some n ∈ Z

and we have reached the desired contradiction.
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