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Defining Energy and Radiation

We consider a uniformly accelerating source in a massless scalar field, whose
motion is depicted in the figure below, and which is given by ϕ(x) = q

4πRθ(z + t),
worked out in [4]. Our goal is to compute radiation via the Poynting flux of a scalar
field with respect to an observer’s proper timelike Killing vector.

Fig. 1: Hyperbolic Motion with 4 labeled regions

We define energy as the conserved quantity associated to a timelike Killing vector
field. Killing vectors fields correspond to the vanishing of the Lie derivative of the
metric; in other words, the metric is left unchanged under infinitesimal translations
by a Killing vector. These generators of symmetries are associated via Noether’s
theorem to a conserved quantity. For inertial observers, the time translation vec-
tor field ∂t is a Killing vector (as it is independent of the Minkowski metric) that
corresponds to the conserved quantity of energy. In Rindler space, the notion of
Energy is different. Rindler energy is the conserved quantity associated with the
Killing field generated by the timelike Killing vector

∂λ = z∂t + t∂z = 1
2
[v∂v − u∂u] (1)

where λ is Rindler time. Notice that this is also the Lorentz boost Killing vector in
Minkowski space.

Now we define Poynting flux. Contracting a timelike Killing vector with the stress
energy tensor captures energy flux. To quantify the flow, we contract with a space-
like vector normal to a constant time surface. This is naturally interpreted as
energy flux per unit area in the outward normal direction. Integrating across all
spatial angles yields power, quantifying the energy flow out of a region:

S = −Tµνξµn̂ν (2)

where ξµ is the Killing vector, n̂ν is a unit normal vector to the surface of integra-
tion, and Tµν is the stress tensor.

Scalar Field Radiation

Power radiated for Minkowski and Rindler observers for a uniformly accelerating
source.

RM = q2a2

12π
, RR = 0

Equivalence Principle Paradox

The equivalence principle glues together special relativity and gravity. There are different
statements for the ’equivalence principle’ which are not necessarily equivalent. Relevant
to us is the qualitative equivalence principle. It captures the relevant physics for uniform
acceleration, namely that

uniformly accelerating frames are qualitatively equivalent to static frames in gravitational
fields.

The paradox comes from considering the following thought experiment [1][2][3] in which we
have a source and an observer in four cases. In which cases does the observer detect
radiation?

The QEP prescribes us to treat 1 & 4 similarly, and 2 & 3 similarly, in answering which cases
observe radiation. To verify this computationally, cases 1 and 2 have supported observers,
and cases 3 and 4 have free falling observers. By the qualitative equivalence principle it
follows that for a supported frame in a uniform gravitational field, given by the Rindler metric

ds2 = −g2Z2dλ2 + dZ2 + dx2 + dy2 (3)

, scalar radiation of supported observers is the physics of Rindler observers. This treatment
was done for electromagnetic fields in [3]. Thus we can use the Minkowski and Rindler
Poynting flux vectors to compute radiation. We expect that cases 1 & 4 report no radiation,
while cases 2 & 3 report radiation.
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Divergence of the Stress Tensor

Working with the divergencelessness of the stress tensor, it becomes convenient
to consider a coordinate system which we call ‘null coordinates’. Let u = t − z,
v = t + z, x = x, y = y. u and v are null lines which on a spacetime diagram
correspond to the rightward and leftward lightrays.

We expect a stress tensor of a field which satisfies energy conservation to have
a divergence which vanishes; ∇µT µν = 0. The scalar stress tensor Tµν =
∂µϕ∂νϕ−1

2gµν∂αϕ∂αϕ, is determined to vanish on the past horizon, and in R∪F .
To help understand how this divergence holds, we can study the flow of the stress
tensor contracted with the Minkowski Killing vector: Sα = −gανTµνξµ.

Fig. 5: Top plot |u| > v, bottom plot is for |u| < v

In the R region, for |u| < v, the flux flows inward to the plane of the source in the
transverse directions. When we get close to the future horizon (u = 0), the flux
starts moving outward to the transverse directions. When |u| < |v|, we have a
inward flux, and when |v| > |u|, we have outward flux. This is a result of the fact
that at these points, the sum of components inside the Sx and Sy expressions
change sign. How does this look on the z–t plane? −u = v in the R region is
the line t = 0, so when t is negative, we have inward flux. When t is positive, we
have outward flux.


