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1 Null Coordinates

When working with the divergencelessness of the stress tensor, it becomes convenient to consider a
coordinate system which we call ‘null coordinates’. Let u=t—z,v=t+z2, x =2,y =y. v and v are
null lines which on a spacetime diagram correspond to the rightward and leftward lightrays depicted
in Figure 1.
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Figure 1: Null Coordinates

Transforming back to usual Minkowski coordinates is ¢ = 3%, z = “=%. We then have that
dt = 3(du+ dv), dz = 1(dv — du). We can note that 2? — t2 = —uv, thus the line element for null
coordinates is given by

ds* = —dudv + dz? + dy? (Eq. A1)

The metric tensor then takes the following covariant and contravariant forms.
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We remark that raising and lowering indices switches the place of v and v.



2 What can we say about these coordinates in 4d spacetime

As in 2d, Ty = 0y@0y @, and Ty, = 0p¢0y¢. One result in 2d is that Ty, = Ty, = 0, this simplifies
checking the trace condition. Does this hold in 4d?
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So this is nonzero and is in fact dependent on the flow in the transverse directions. The conservation
law then requires us to take one more derivative,
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and similarly

0%Tyy =0

To be complete, here are the remaining components of the stress energy tensor.

Tuy = u¢6y¢
Tva: = v¢az¢
Tuy = v¢ay¢

Ty =0,00:6 — 5((0:0)° + (9,6)° — 10,60,9)

1
Tyy :ay¢ay¢ - 5((8x¢)2 + (ay¢)2 - 4a¢uav¢)
Ta:y :ar¢ay¢
Divergencelessness is captured in the computation 0“1}, we must compute the following

aw-z—juu + avTuv + awTux + ayTuy
auTuu + avTvv + 8$Tvx + ayTvy
auTmu + aszv + 8zT:c:c + 8ysz

0Ty + 0" Ty + 0Ty + VT,

and verify that each vanishes.



2.1 Divergencelessness of a uniformly accelerating source
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Calculation: T, Simplified
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Verified 0*T,,,, this morning (March 2). The theta function terms add to zero since ¢ satisfies the

wave equation and we are left with
2

q
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which is zero since 9, R = 0 when v = 0.

Calculation: T, Simplified
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Theta function terms will sum to 0 by wave equation. We are left with terms which are delta functions
or products of theta and delta functions which since §(v)0(v) = 16(v) means we can consider a grand
sum of delta functions which are

8, [2 (8]25)] 5(v) — [(890]%)22;4(8@,}%)2} 5(v) + 0, {—(2%3}%)} 5(w) + 9, [_%5)] 5(v)

differentiating the terms and pulling out the delta function
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Evaluating this at v = 0, we know that 0, R is zero so

% ((—4(0uwvR) + (022 R) + (9yy R))R — 2((0:R)? + (9, R)?) 6(v)

Since we are able to add in terms that are equal to zero,
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It follows that this vanishes since the wave equation vanishing implies: (0#9,R)R — 20" R0,R =0

Calculation: T,, Simplified
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(—=20,Tyy,) yields a delta function term %(&LR)(@JER)(S(U) which at v = 0 is zero since 9, R
vanishes. T, will not give rise to any delta function terms. The only delta function terms will be
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Indeed vanishes.

Calculation: T,,, Simplified
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(=20,T),,) yields a delta function term 15lsr (0, R)(0yR)0(v) which at v = 0 is zero since 9, R
vanishes. Ty, will not give rise to any delta function terms. The only delta function terms will be
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Indeed vanishes.

3 Graphing Vector Fields
Our next goal is to plot the vector field of
St = —ghoT,56P (5)

where ¢7 is a Killing vector.

Minkowski Time Killing Vector

So we can compute the components of S4;,

SJQ\L/[ - Tvu + Tuv
1

1
S]Z’\/4 == i[Tyu + Tyv]

In the past, moving along u, the flux diverges from the plane of the source in the transverse directions.
When we get close to the future horizon (u = 0), the flux starts moving inward from the transverse
directions. For the Rindler Killing vector, we obtain the following figures. When |u| > |v|, we have
a outward flux, and when |v| > |u|, we have inward flux. This is because at these points the sum
of components inside the S and SY expressions change sign. How does this look like on z t plane?
—u = v in the R region is the line z = 0, when t is negative, we have outward flux. When ¢ is positive,
we have inward flux as can be seen in the figures below.
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The figures above show the flux of energy-momentum in x-z-t coordinates for a = 1 projected onto
y = 0.

Question: Since this is symmetric about t == 0 (and under time reversal) where does the energy
that is escaping into the R region come from?

Rindler Time Killing Vector The Rindler time Killing vector expressed in these coordinates is

dy = % (06 — il (6)

Here the @ and ¢ are basis vectors in coordinates for the vector field so the coordinates for S’I’fi are

St = vy — uly,
Sk = 1Ty — uly,

Slx% = %[UTzv - UTzu]
Sk =— %[UTyv — uTyu]
4 Electromagnetic Vector Fields

We now wish to graph S¥ = —gH*T,, " where T, is given by an electromagnetic uniformly acceler-
ating source.

4.1 Minkowski Flux

In Minkowski coordinates, the timelike Killing vector is given by

g =0,



Next we need 7),,,, obtained from Boulware (IV.2), ignoring the delta function terms,
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Lastly S# = —TH" g, &> = T



