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The goal of part 1 is to give motivation and background regarding isolated singularities of complex
algebraic curves and the relationship to knot theory and low dimensional topology. We will develop the
necessary tools required for the lattice cohomology for isolated singularities, namely the semigroup of a
branch associated to an isolated singularity of an algebraic curve. We will also define the delta invariant
and study links of singularities.

Isolated Singularities of Algebraic Curves First we fix some notation:

• C[x, y] denotes the ring of polynomials over C

• C[[x, y]] dentoes the ring of formal power series over C

• C{x, y} denotes the subring of convergent power series over C in a neighborhood U around 0

Theorem: C{x, y} is a UFD

Proof.

Definition: Let f : C2 → C where f ∈ C[x, y], then we define V (f) to be

V (f) = {(x, y) ∈ C2|f(x, y) = 0}

that is the zero locus of f .

Example: Consider f(x, y) = x2 + y2 − 1: V (f) is the following simply the set (x, y) such that x2 + y2 = 1,
that is the unit circle!
Example: Consider f(x, y) = x3 − y2: V (f) is the following graph:
Example: Consider f(x, y) = x2 − y2: V (f) is the cross

Definition: Let f, g : U1, U2 → C be defined for some neighborhoods U1, U2 about 0. f, g define
the same germ at 0 if they are equivalent in some open subset U ⊂ U1 ∩ U2 containing 0. If f, g are
holomorphic, f ∼ g if and only if their power series expansions coincide.

Our considerations will be ‘local’ in the sense that we are interested in the behavior of our algebraic
curve in the vicinity of an isolated singularity at 0. Thus we will implicitly always work with the germ
defined by f . Of course I need to actually say what I mean by ‘singularity’ and ‘isolated singularity’.

We define the Jacobian of f as

df(z) =

(
∂fi(z)

∂j

)
ij
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Definitions:

Singular Locus: We define the singular locus of V (f) to be the subset:

Sing V (f) = {x ∈ V (f) : rank(df(x)) < rank(df(xgeneric))}

moreover Sing V (f) ⊂ V (f).

Isolated Singularity: V (f) is said to have an isolated singularity at 0 if for some ε > 0: Sing V ∩Bε =
{0}. So in a small neighborhood of the origin, 0 is the only singular point, i.e. 0 is the singular locus.

Example: If we consider the Morse function x2
1+...+x2

n = 0 is singular on {0} but x2
1(x

2
2+x2

3) = 0 contains
{x1 = 0} in its singular locus thus it is not an isolated singularity.

If V is an isolated singularity then V − {0} is a ”smooth” complex manifold of (complex) dimension
dimV . This also carries a canonical orientation from the complex structure. Now we want to understand
these objects from at least two points of view: the analytic and the topological.

Analytic Type: Analytic type of (V, 0) is the isomorphism type of (V, 0) up to analytic isomorphism.

Ideally we would like both topological and analytic invariants for our singularity. What we do here is
to view V (f) as an algebraic object, thus allowing us to use techniques from commutative algebra.

Definition: Let O = C{x, y}. For an (algebraic curve) variety V (f) defined by f(x, y) = 0 we define
the local ring OV (f) by

OV (f) =
O
⟨f⟩

=
C{x, y}
⟨f⟩

OV (f) is a local ring in the sense that it has a unique maximal ideal: m = ⟨x, y⟩. This turns out to be
the correct lense to analyze these singularities as the analytic type of V is completely determined by the
local ring OV,0 up to C-algebra isomorphism!

Let γ : C → C2 be a parameterization of f . There are theorems determining the existence of “good”
parameterizations. Moreover, locally the germ of f is an element in C{x, y}, thus since C{x, y} is a UFD,
f decomposes uniquely as:

f =
∏
i

(gi)
k

for irreducible gi for all i. Moreover, V (gi) ⊂ V (f) since if gi(x, y) = 0, then f(x, y) = gi(x, y)
∏

i ̸=k(gk)
l = 0.

Each gi determines a branch of f . (later on we will see that each irreducible component also determines
a component in the link of the singularity).

As an example if f = x2 − y3 = 0 in C2, 0 then x(t) = t3 and y(t) = t2 so the parameterization is given
by local holomorphic functions.

Now suppose we have a parameterization n : C → C2, then this determines a ring homomorphism
γ∗ : C{x, y} → C{t}. This is defined by

∑
i,j ai,jx

iyj 7→
∑

i,j ai,jx(t)
iy(t)j =

∑
k akt

k. The kernel of
γ∗ is the ideal of functions which vanish on the branch B defined by the parametrization (so V (B) =
C{x, y}/ ker γ∗). The quotient ring defined by the branch OB is isomorphic (by first isomorphism theo-
rem) to the image of γ∗ in C{t}. Recall that the order of a polynomial (or power series) is the degree of the
lowest degree nonzero term.
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Definition: Semigroup of a branch and the delta invariant

Let B be a branch, then the semigroup is defined as:

S(B) = {ordϕ|ϕ ∈ OB}

The delta invariant is defined as

δ = dim
C{t}
OV,0

= #{Z≥0 − φ}

The semigroup can easily be seen to be a subsemigroup of Z>0.

Example: Consider the curve defined by x3 = y5. Convince yourself that t 7→ (t5, t3) defines the parame-
terization. The semigroup is generated by 3, 5 so S(f) = ⟨3, 5⟩. 1, 2, 4 are clearly in the complement, as is
7. We can generate 3 + 3 = 6, 5 + 3 = 8, 6 + 3 = 9, 5 + 5 = 10, 8 + 3 = 11, 9 + 3 = 12, and from here we
see that we can generate every greater element. Thus {1, 2, 4, 7} are all elements in the complement and
δ(f) = 4.
Exercise: xa + yb φ = ⟨a, b⟩ with a and b relatively prime, then δ = (a−1)(b−1)

2

We will now turn to studying the “link” of an isolated singularity. As part of our definition of “isolated”
we know that V (f) has a full rank jacobian, and thus by the implicit function theorem, V (f) − 0 forms
a complex manifold of complex dimension 1. Moreover, we have the following result: there exists ε0 >
0 such that S2n−1 (a sphere bounding a ball of radius ε about the origin) intersects V (f) transversely.
Moreover, ∀ε 0 < ε < ε0, V (f) ∩ S2n−1 have the same topological type. This forms the link:

Definition: Let V (f) have an isolated singularity at 0.

Link(V (f)) = V (f) ∩ S2n−1
ε0

What is this “link” topologically? Recall from the previous paragraph that f uniquely factorizes as a
product of irreducible components. As V (gi) ⊂ V (f) it is not hard to reason that Link(gi) ⊂ Link(f), and
moreover, gi ∩ S2n−1 is precisely one component, which by transversality must have real dimension 1,
and moreover is closed; thus Link(gi) ∼= S1. Moreover, Link(V (f)) = ⊔k

i=1S
1. By transversality and the

fact that V (f) − 0 in particular is a smooth manifold, it follows that the canonical embedding of the link
into S2n−1

ε0 is smooth, thus it indeed forms a link in the usual knot theory sense. This is an important part
in the history of knot theory as these ‘algebraic links’ were among the first to be seriously studied.

If we work in a dimension higher and consider f : C3 → C, then the link will be the transverse in-
tersection of a complex plane which has real dimension 4 with a 5 dimensional sphere, which then by
transversality means that the link has dimension n = 4 + 5 − 6 = 3. It will turn out that links of surface
singularities are in fact plumbed three manifolds with negative definite intersection form.

I Construction of the Lattice Cohomology

Our goal will be to assign from a geometric object some data from which we get a cohomology theory.

Geometric object → Data → cohomology

H∗ =
⊕
q≥0

Hq

and Hq is a Z-graded Z[u]-module (deg u = −2). The nice part is that lattice cohomology can be defined
purely combinatorialy, thus Data → cohomology is relatively easy. The hard part is Geometric object →
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Data that is generating the relevant data from our geometric/topological objects which forms a coho-
mology that 1) is an invariant (topological, smooth, analytic) and 2) contains useful information. Several
lattice cohomologies have been developed for objects arising in singularity theory and low dimensional
topology.

I.1 Data

There are 3 pieces of data associated to our geometric object, a Zr-lattice, an ordered basis {Ei}ri=1 on
which we can define a partial ordering on the lattice and a cubical decomposition of Rr. The 0-cubes are
l ∈ Zr and 1-cubes are the edges [l, l + Ei] for l ∈ Zr. A 2-cube [l, Ei, l + Ej , l + Ei + Ej ], and so on. As a
remark Zr ⇝ (Z≥0)

r ⇝ R(0, c) where c ∈ Z≥0. Lastly we need a weightfunction on the lattice. w : Zr → Z
with the condition that #w(−∞, n] < ∞. Essentially this means that there exists a minimum weight, nw.
This weight then extends to the q-cubes which I will denote□q where q is the dimension of the cube. The
weight of the cube w(□q) = max{w(l), l is vertex of□1}. Now Sn = ∪w(□)≤n□. One can easily see that this
forms a filtration of Zl

∅ ↪→ Swm
↪→ ... ↪→ Sn ↪→ Sn+1 ↪→ ...

I.2 Cohomology

The cohomology is the following Z[u] module formed by previous filtration:

Hq =
⊕

n≥mw

Hq(Sn;Z)

where n gives a Z-grading and Hq(Sn;Z) is the qth singular cohomology of Sn. We are now able to define
the u action turning this into a Z[u] module. The u action u : Hq(Sn;Z) → H1(Sn−1,Z) is simply the action
by restricting the domain from Sn+1 to Sn. We also require deg u = −2 (for historical reasons coming from
Heegaard-Floer).

Example 0: Consider Z≥0 as the lattice. Let w(x) = x. It is clear that there is no nontrivial homology for
q > 1 and H0(Sn;Z) ∼= Z for all n. Thus we obtain a Z tower T . Moreover H0

red = 0.

Moreover if w(l + Ei) ≥ w(l) for all l, i then Sn is contractible and the cohomology is trivial.

Example 1: In this example we will consider the lattice cohomology defined by a semigroup in Z≥0. Let
us assume 0 ∈ φ so it forms a monoid. Assume that δ(φ) < ∞ (so there are only finitely many gaps).
Define

h(ℓ) = #{s ∈ φ, s < ℓ}

so h looks at the number of semigroup elements below each element. The lattice cohomology of h(l) is
trivial since its increasing, so we define

h̄(ℓ) = #{s ∈ Z≥0 − φ, g < l}

counts the number of gaps below. It’s increasing, hits δ and then remains constant.

w(ℓ) = h(ℓ)− h̄(ℓ)

This measures the distribution of the semigroup.

So to any semigroup we have a lattice cohomology.

Example 2: Use the projector.

Euler Characteristic Assume that rankZHq
red < ∞, then

χ(H∗) = −mw +
∑
q

(−1)qrank(Hq
red) =

∑
□q

(−1)q+1w(□q)
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We have given an analytic lattice cohomology for the singularity but what can we do for the topological
side? On its own the link topologically is just a bunch of S1’s so not so interesting; however, we can think
of V as a plane curve, thus the link can be embedded into S3 which has a rich topology (knot theory).
Here we have the link Floer homology HFL−(L). This categorifies the multivariate Alexander polynomial
which corresponds on the analytic side to the Hilbert function. The Hilbert function from φ is:

H(t) =
∑
ℓ≥0

h(ℓ)tℓ

Consider x3 = y2, then t 7→ (t2, t3) is the parameterization which gives rise to φ = ⟨2, 3⟩ as the semigroup.
We should note that the topological type of the link of x2 = y3 is the trefoil (2,3) torus knot. Taking the
Hilbert function we see: ∑

s∈φ

ts =1 + t2 + t3 + t4 + ....

=1 + t2
1

1− t

=
1− t+ t2

1− t

which is the Alexander polynomial of 31!

Now if our curve is not irreducible, then

(C, 0) = (C1, 0) ∪ .... ∪ (Cr, 0)(C2, 0)

then the Hilbert function:
H(t1, ...tr) =

∑
ℓ∈(Z≥0)r

h(ℓ)tℓ11 ...tℓrr

We are going to get the multivariable Alexander polynomial:

Now if we define the weight function

w(ℓ) = 2h(ℓ)− ℓ

then we get a Lattice cohomology for the topological type of V (f).

Example: V (f) = {x2 − y4} = {(x− y2)(x+ y2)} which has two irreducible components. Thus Link(V ) =
S1 ⊔ S1.

PL1(t1) =
1

1− t1

PL2
(t2) =

1

1− t2

So
PL(t1, t2) = 1 + t1t2

II Surface Singularities

If dimC V = 2 (normal surface singularity) then dimR link(V ) = 3. The topological type of the link for
isolated singularities is a negative definite plumbed 3-manifold. Moreover, we can compute its Heegaard
Floer homology HF− whose Euler characteristic is the Seiberg-Witten invariant. We can also compute a
lattice cohomology: H∗ whose Euler characteristic also yields SW .
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When Link(V ) is a QHS3 then
H∗ ∼= HF−[Link]

On the analytic side, there is H∗
an whose Euler characteristic yields the Pg (geometric genus). Between

H∗
an and H∗

top there is a functor: H∗
an → H∗

top. Our goal is to classify analytic types for a topological type.
Since we mentioned functors, we need to specify a category. On the topological side the morphisms are
cobordisms, while on the analytic side the morphisms are deformations of singularities.
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