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I Knot Concordance

Introduction These are some personal notes to help make things precise in my mind. There are 3 notions
of concordance (actually 4 if we include homology concordance) in the literature that I found which are
in general not equivalent. These are algebraic, topological, and smooth concordance. To each there is an
associated group called the (top, sm, alg) concordance group which will be denoted C top,C sm,C alg. A main
result is that there exists group homomorphisms that surject as follows

C sm onto→ C top onto→ C alg

It is known that C alg ∼= Z⊕Z∞
2 ⊕Z∞

4 , but C top and C sm are not known up to isomorphism. It remains
to fully capture torsion subgroups in C , see [6]. The existence of knots which are topologically slice but not
smoothly slice can be used to prove the existence of exotic smooth structures on R4. There is some effort
in trying to accomplish similar goals for S4 in hopes of disproving the Poincare conjecture, but this remains
unresolved.

I.1 Preliminaries: Seifert form

Let K, S1 ↪→ S3 be a knot in S3. To this knot we can construct oriented compact surfaces whose boundary
is K. Such a surface is called a Seifert surface. Given a Seifert surface F , A Seifert form is a bilinear form
which takes pairs of classes in H1(F ) and returns the linking number of a loop in [f ] and the positive pushoff,
ι+β. Such a form can be represented by a matrix of dimension (2g × 2g), where g is the knot genus. Seifert
forms for a knot K admit different matrix representations up to S-equivalence. The Alexander polynomial
can be computed as det(tA−AT ), while the signature σ(K) = (1−ω)A+(1−ω̄)AT , where ω is unit modulus
complex number not equal to one.
Example: Consider the following Seifert surface of the Trefoil.
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We can now find the entries of the Seifert matrix.

lk(f1, f
+
1 ) =1

lk(f1, f
+
2 ) =− 1

lk(f2, f
+
1 ) =0

lk(f2, f
+
2 ) =1

So A,

A =

(
1 −1
0 1

)
We can compute the Alexander Polynomial easily as ∆31(t) = t2 − t+1, which can be normalized by t−1 as
∆31(t) = t+ t−1 − 1. The signature can also be easily computed: σ(31) = −2

Theorem: Let A be a square matrix with integer coefficients. A is a Seifert matrix if and only if det(A−
AT ) = ±1.

Proof. ⇒ The forward direction comes as a corollary to Lickorish theorem 6.10 (ii) [4]. An outline of the ar-
guement is that entries in A−AT yield the intersection form on F , which has determinant plus or minus one.

⇐ Notice that A − AT is anti-symmetric, so in order for det(A − AT ) to be nonzero, A must be even-
dimensional. Now we can build a Seifert surface of genus g by glueing (g) pairs of “bands” (as in figure 6.1)
and twisting and linking them properly to obtain the coefficients in A.

Corollary: Exercise 6.7 in Lickorish. Suppose B is any 2n× 2n matrix of integers with the property that

B − BT consists of n blocks of the form

(
0 1
−1 0

)
running down the diagonal and zeros elsewhere. Then

there exists a knot for which B is a Seifert matrix.

Example: Suppose we are given the following Seifert matrix A,

A =

(
3 1
0 2

)
We verify that this is in fact a Seifert matrix: det(A−AT ) = −1. Now the dimension tells us that F has 2
bands that generate the homology. This is realized in the following surface
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Proposition: If AF1 and AF2 are Seifert matrices for F1 and F2, then AF1#F2 = AF1 ⊕AF2 .

Proof. Consider a Mayer-Vietoris exact sequence, where A = F1, A = F2 and A ∩B = I × I, it follows that
since all these spaces are path connected, that

H1(F1#F2) ∼=
H1(F1)⊕H1(F2)

im ϕ

where ϕ : H1(F1 ∩ F2) → H1(F1)⊕H1(F2) is the homomorphism in the exact sequence, but since H1(F1 ∩
F2) = H1(I × I) = 0, it follows that H1(F1#F2) ∼= H1(F1) ⊕ H1(F2), and we conclude that AF1#F2 =
AF1 ⊕AF2 .

I.2 Sliceness & Concordance

Suppose a knot K bounds a flat embedded disk D2 in S3 then we know that it is the unknot. What can
we say however about a knot which bounds a disk in B4? Stated this way we can see that the answer is
trivial since any knot K bounds a disk in B4; simply take the cone CK which we can embed into S3 × [0, 1]
and moreover since K ∼=homeo S1, it follows CK is homeomorphic to a disk. The cone of a knot however
has a singularity at the apex which makes the disk not a particularly nice embedding. We can reformulate
our question into posing whether or not a knot bounds a locally flat disk, which leads us to the following
definition.

Topologically Slice A knot K, S1 ↪→ S3 is said to be topologically slice, if it bounds a locally flat embed-
ding of a disk D2 in B4, such that ∂(B4, D2) = (S3,K). Such a disk is said to be a slice disk.

We should be precise in what we mean by “locally flat”. This means that D ⊂ B4 has a neighborhood
N such that N(D) = D × I2 which meets S3 in ∂D × I2 (which on the boundary of B4 will be a regular
neighborhood of the knot i.e. a solid torus). Local flatness ensures that we avoid trivialities such as taking
a cone over a knot, and also ensures that the slice disk avoids singularities. We also need to emphasize that
although in S3, the theory of knots is equivalent for locally flat embeddings (or piecewise linear embeddings)
and smooth embeddings, w.r.t. 4 dimensional topology, the smooth and topological categories are not equiv-
alent. It should be emphasized that being topologically slice does not necessary imply being smoothly slice,
i.e. that the slice disk is a smoothly embedded submanifold.

Smoothly Slice A knot K,S1 ↪→ S3 is said to be smoothly slice if it bounds a smoothly embedded disk
D2 in B4. Two knots K1 and K2 are said to be concordant if there exists a smoothly embedded cylinder
S1 × [0, 1] in S3 × [0, 1] whose boundary is K1 ⊔ −K̄2.
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Example: 61 is an example of a slice knot. The way to see this is by looking at a “slice movie”. The disk
will at every slide of the movie look like a finite number of closed loops starting at the first frame with the
knot (so we have one loop), then almost all frames are simply isotopies of K except at some finite times,
we meet a “saddle” point where we switch crossings and the succesive time steps will see an increase in the
number of unknotted link components. We can then think of this movie combinatorially as a finite sequence
of isotopies and moves whereby two strands are brought close together and switched (see the example below).

Figure 1: Source Julia Collins: University of Edinburgh [1]

There is a very famous example of a knot that is topologically slice but not smoothly slice, the Conway
knot! It was known for a long time that the Conway knot was topologically slice, but only fairly recently
was it proven by Lisa Picarillo that it is in fact not smoothly slice.

Figure 2: Conway Knot

Picarillo’s proof requires the Rasmussen invariant and Khovanov homology, and is outside the scope of
these notes, but is certainly something I plan to revisit in the future. Next we discuss concordance, and its
relation to slice knots.

Proposition: Concordance is an equivalence relation on knots.

Proof. Let K, S1 ↪→ S3 be a knot, then if we simply take K × [0, 1], where K × 0 = K ⊂ S3, then
∂K × [0, 1] = K ⊔ −K̄, thus concordance is reflexive. Let K1 and K2 be concordant. If we simply reverse
the concordance cylinder, then we obtain a concordance from K2 to K1. Transitivity follows from gluing
together cylinders.

Proposition: For any knot K, K# − K̄ is smoothly slice. Moreover if K1 and K2 are concordant then
K1#− K̄2 is slice.
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Proof. First, I claim that if two knots K1 and K2 are concordant, then K1#K2 is slice. Observe the following
diagram,

We take K1 and K2 to be concordant, and observe this cylinder between them which is understood to
be PL (or smoothly) embedded in S3 × [0, 1], if we join these two knots, what we are doing effectively to the
cylinder is cutting along its vertical axis and forming a disc D2 which satisfies the flatness property necessary
to be a slice disk (or smoothness property in the case of smoothly concordant), It follows immediately that
since K1#K2 admit a slice disk, that K1#K2 is slice. Moreover since any knot K is concordant to itself, it
follows that K1#− K̄2 is slice.

We can also see that if K ∼conc 01, then K is slice. (simply cap off the unknot in the cylinder), so the
[01] class is precisely the class of (sm or top) slice knots.

Proposition: (sm or top) Concordant knots have vanishing signature.

Proof. From the previous proposition, if two knots K1 and K2 are concordant, then K1#K2 is slice.
Next, I claim that for two knots K1 and K2, σ(K1#K2) = σ(K1) + σ(K2). Suppose AK1

and AK2
are

Seifert matrices for K1 and K2 respectively, then

AK1#K2
=

(
AK1

0
0 AK2

)
. It follows that

(1− ω)AK1#K2
+ (1− ω̄)AK1#K2

=

(
(1− ω)AK1

+ (1− ω̄)AK1
0

0 (1− ω)AK2
+ (1− ω̄)AK2

)

Thus it follows that σ(AK1#K2
) = σ(K1) + σ(K2).

It follows now that if K1 and K2 are concordant, then that since their join is slice and slice knots have
signature zero, then σ(K1#K2) = 0 implies σ(K1) = σ(K2) as required.

While knot signature can be used to obstruct knots from being (sm, top, alg) slice, it cannot distinguish
between those three categories. Stronger invariants are required to distinguish between them.
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I.3 Concordance Groups

In this section, we show that the equivalence class of knots under concordance together with the connect
sum operation on knots has the structure of an Abelian group. First we need to show that the connect sum
respects concordance classes:
Proposition: (well definedness) If K1 ∼ K2 and J1 ∼ J2, then K1#J1 ∼ K2#J2.
Sketch of Proof. If we take concordances C1 and C2, and cut the cylinder via cutting the knot and glue the
boundaries via the join, then we obtain a concordance of K1#J1 and K2#J2.
Theorem: The set C of concordance classes form an Abelian group under the connect sum operation of
knots. The class of 01 which consists of all slice knots form the identity element. Inverses of [K] are precisely
[−K̄].

Proof. From the previous proposition, we know that this is well defined. It inherits associativity and com-
mutativity from connect sum of knots. Lastly since we know that K#− K̄ is slice, it follows that the inverse
of [K] is precisely [−K̄].

We can do the arguments in the previous theorem and proposition for both the smooth and top case.
We can also construct a natural surjective homomorphism ϕ : C sm → C top sending a class in C sm to its
class in C top, this is indeed well defined as any two smoothly concordant knots are certainly topologically
concordant. Moreover we can view C top as being a subgroup of C sm.

I.3.1 Properties of Ctop,sm

Consider the figure eight knot (41), recall that it is negatively amphichiral, meaning that it is equivalent
to its mirror and equivalent to its reverse. It follows then that in the concordance group, [41] has order 2.
Moreover, one can show that there are infinitely such summands of order two which live in the concordance
group, giving us

⊕∞
n=1 Z2.

There are also summands
⊕∞

n=1 Z. In the next section on algebraic concordance we will prove that that
knots with non-vanishing signature have infinite order in C alg. Since an obstruction to algebraic sliceness is
an obstruction to top and smooth sliceness, we can see that this argument extends to the topological and
smooth categories, and it follows [31] is of infinite order in C top,sm. Vanishing signature however is not a
sufficient condition to determine finite order in the concordance groups. There are classes of finite order
knots in C alg which have infinite order in C sm. It is still an open problem whether there exists any other
torsion in C top,sm.

Theorem: A knot with trivial Alexander polynomial is topologically slice.

I.4 Algebraic Concordance

Algebraic concordance is a way to capture the algebraic essence of concordance. The Seifert form of a
topologically slice knot satisfies a “half lives half dies” argument whereby half of the generators of H1(F )
for K are sent to zero by the Seifert form which in the matrix representation takes the form of a matrix
with a block of zeros in the upper left. (for a proof see [4] proposition 8.17). A matrix in that form is
called metabolic, and algebraic concordance is an equivalence relation on the set of Seifert matrices (which
we defined in the preliminaries) such that the zero class is precisely the set of metabolic matrices. In this
way C alg reflects the structure concordance and sits as a subgroup in C sm,top.
Definition: Metabolic Form A bilinear form α : V → R is said to be metabolic if V = V1 ⊕ V2, and for
any two v, w ∈ V1, α(v, w) = 0.

Equivalently the matrix form A of α is metabolic if for some U ∈ GLn(Z) (unimodular matrices) A is of
the following form

UAUT =

(
0 B
C D

)
Lickorish proved in chapter 8 that topologically slice knots admit metabolic Seifert matrices. However,

admitting metabolic Seifert matrices does not characterize (topologically or smoothly) slice knots.
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Proposition: If K is algebraically slice, then the Conway-normalized Alexander polynomial of K is of form
f(t)f(t−1) (this is known as the Fox-Milnor condition), where f is a polynomial with integer coefficients.
Additionally, σ(K) vanishes.

Proof. The proof is essentially equivalent to the proof of Theorem 8.18 in Lickorish, except we note that this
theorem generalizes to algebraically slice. For the second part, see the proof of Theorem 8.19 in [4]

The next goal will be to construct the algebraic concordance group, by modding out the Seifert matrices
by Metabolic forms. The following series of theorems and propositions are taken from Conway [2]
Lemma [2]: Given Seifert matrices A,B,A′, B′,M1,M2 and M ., the following statements hold.
(1) If M1 and M2 are metabolic, then M1 ⊕M2 is metabolic
(2) If A⊕−A′ and B ⊕−B′ are metabolic, then (A⊕B)⊕−(A′ ⊕B′) is metabolic;
(3) If M and A⊕M are metabolic, then A is metabolic.

Proof. Let P1, P2 ∈ Gln(Z) be (2g and 2h dimensional respectively) such that P1M1P
T
1 and P2M2P

T
2 have g

and h dimensional blocks of zero in their upper left corner. Let P be the 2(g+h) square permutation matrix
which places the aforementioned blocks of zeros next to each other in the basis. Clearly, P (P1 ⊕ P2)(M1 ⊕
M2)(P1 ⊕ P2)

TPT contains a g + h block of zeros in its upper left hand corner.
To prove (2) Let P be the permutation matrix s.t. P ((A ⊕ B) ⊕ (−(A′ ⊕ B′)))PT = (A ⊕ A′) ⊕ (B ⊕ B′),
and it follows from (1) that this is metabolic.
(3) This last point is knot as Witt cancellation and is proven in Levine [3].

Definition: A knot K is said to be algebraically slice if it admits a metabolic Seifert form. Two abstract
Seifert forms are said to be algebraically concordant if V1 ⊕−V2 is metabolic.

Theorem: [2] Algebraic concordance is an equivalence relation on the set S of Seifert matrices. Moreover,
the set C alg of algebraic concordance classes forms an abelian group called the algebraic concordance group:
the group law is induced by the direct sum, the zero element is represented by metabolic matrices and the
inverse of a class [A] is −[A].

Proof. Reflexivity: Let A be a 2n × 2n Seifert matrix, and consider A ⊕ −A. Let P be the matrix which

adds the 2m+ ith row to the ith row, for 4m× 4m matrix, in block form P =

(
In×n In×n

0 In×n

)
. Moreover,

(
In×n In×n

0 In×n

)(
A 0
0 −A

)(
In×n In×n

0 In×n

)T

=

(
0 −A

−A −A

)
Thus A⊕−A is metabolic.
Symmetry: Suppose A ∼ B, where A is m×m and B is n× n. Suppose U is such that U(A⊕−B)UT has
m+ n block of zeros in the upper left, Now simply interchange the first m rows of U with the next n rows
to form Q, and it follows that Q(B ⊕−A)QT has m+ n block of zeros in the upper left.
Transitivity: Suppose A ∼ B and B ∼ C, then (A⊕−B)⊕ (B ⊕−C) = (A⊕−C)⊕ (B ⊕−B), and since
(B ⊕−B) is metabolic, and by (2), and then (3) of the earlier lemma, it follows that a⊕−C is metabolic.

Abelian Group: (2) of the previous lemma demonstrates algebraic concordance under direct sum as a
well defined group operation. The identity is clearly the class of metabolic Seifert matrices. Inverses of a
class [A] is [−A]. Associativity and Commutativity are also clear.

Theorem: [2] The map that sends the concordance class of a knot to the algebraic concordance class of any
of its Seifert matrices gives rise to a well-defined group homomorphism ϕ : C sm → C alg

Levine was able to prove that
C alg ∼= Z∞ ⊕ Z∞

2 ⊕ Z∞
4 (1)

Proposition (Exercise 3.2.7 [5]): Show that a quadratic Alexander polynomial for a slice knot has the
form nt2 − (2n+ 1)t+ n, where n = k(k − 1), k ∈ N.
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Proof. Let A be a Seifert matrix for such a knot, then it follows that since ∆K(t) is quadratic, K is slice,
and that A is 2× 2, and moreover since det(A−AT ) = ±1, that A takes the form

A =

(
0 k

k − 1 l

)
then

∆K(t) =− (tk − (k − 1))(t(k − 1)− k)
·
=t2k(k − 1)− (k2 + (k − 1)2)t+ k(k − 1)

=t2k(k − 1)− (2k(k − 1) + 1)t+ k(k − 1)

Let n = k(k − 1),

∆K(t) =nt2 − (2n+ 1)t+ n.

Proposition (Exercise 3.2.12 [5]): Show that if a knot K has finite concordance order, i.e., if there is
a positive integer n such that nK is slice, then σ(K) = 0.

Proof. Recall that if a knot K is slice, then σ(K) = 0, and recall that for knots K and J , σ(K + J) =
σ(K) + σ(J). Now suppose that K has finite concordance order n, so nK is slice, then

σ(nK) =nσ(K)

0 =nσ(K)

Thus σ(K) = 0.

It follows immediately that the trefoil has infinite order in the concordance groups since its signature is
non-vanishing.

We should at this point note that all invariants for concordance and invariants detecting sliceness are
algebraic concordance invariants and cannot effectively provide obstructions between C alg,sm,top. Though
some, as an example trivial Alexander polynomial, are indeed strong enough to detect topological sliceness,
generally since these invariants are defined from the Seifert form, they are capped as being invariants of C alg

which is the coursest of these concordance groups. The first obstructions to C top,sm for algebraically slice
knots are the Casson-Gordon invariants which will be disgussed in a later section.

I.4.1 Proof of C alg Isomorphism

Definition: C alg
F is the algebraic concordance of Seifert matrices over a field F where the Seifert matrices

are defined as satisfying the following condition:

det((A−AT )(A+AT )) ̸= 0

The first goal here is to establish the isomorphism between C alg
Z and C alg

Q . The first thing we should

notice is that there is a natural map ϕ from C alg
Z to C alg

Q which takes a representative from a concordance
class over Z and sends it to the class over Q. While it differs from the usual spirit of calling a map an
inclusion map, it will turn out to be an injective map, so we will call this the natural inclusion map. Our
goal will be to show that ϕ is an injective homomorphism, with the discussion of surjectivity following later.
Proposition: ϕ is a homomorphism

Proof. Let [A] and [B] denote two classes in C alg
Z , and let [C] = [A] ∗ [B], then ϕ([A] ∗ [B]) = ϕ([C]), and I

claim that ϕ([C]) = ϕ([A])ϕ([B]). This holds simply from the fact that we can choose representatives that

ϕ([C]) has representative C, which has an integral metabolizer that corresponds to [C] ∈ C alg
Z .
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To prove injectivity, we require the following lemma.
Lemma: Every concordance class in Calg

Z,F has a non-singular representative.

Sketch of Proof The idea of the proof is to show that given a Seifert matrix A (over Z or F is concordant to
an elementary reduction B (of the form in Lickorish), and since we may do elementary reductions until we
obtain a non-singular matrix, the lemma follows.
Proposition: ϕ is an injective map.

Proof. Since ϕ is injective, it suffices to show it has trivial kernel. Let A be a non-singular representative
from the 0 class in Calg

Q . Let H be a rational metabolizer for A, it remains to show that A has an integral

metabolizer. Viewing Z2n ⊂ Q2n, let Z2n = V , let H0 = H ∩ V . Since A vanishes on H ×H, it vanishes on
H0 ×H0.

Suppose {h1, ..., hn} is a basis for H over Q. Since hi = (p1i /q
1
i , ..., p

2n
i /q2ni ), let ai = LCM(q1i , ...., q

2n
i ),

then aihi ∈ H0 form a linearly independent basis of H over Z with rank n, and moreover as H0⊗ZQ ⊂ H ∼=
Qn, the rank of H0 is n. It remains to show that H0 is a direct summand. Let v ∈ V and suppose for some
non-zero integer m, mv ∈ H0 ⊂ H. Since H is a rational vector space, v = (1/m)mv ∈ H which implies
that v ∈ H ∩ V = H0. It follows that V/H0 is torsion-free and thus the exact sequence

0 → H0 → V → V/H0 → 0

is split exact, thus H0 is a direct summand of Z2n.

Surjectivity will follow after we construct infinitely many copies of Z,Z2 and Z4.
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